›› 2015, Vol. 36 ›› Issue (11): 3301-3306.doi: 10.16285/j.rsm.2015.11.035

• Numerical Analysis • Previous Articles     Next Articles

Numerical simulation of particle breakage of coarse aggregates

YANG Gui1, 2, XU Jian-bao1, 2, LIU Kun-lin1, 2   

  1. 1. Engineering Safety and Disaster Prevention Institute, Hohai University, Nanjing, Jiangsu 210098, China, 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2014-04-10 Online:2015-11-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant Nos.51479059 and U1134207) and Central Universities Foundation (Grant No.2013B31914).

Abstract: The coarse aggregate can show significant particle breakage characteristics under external force loading. Studying the particle breakage process is one of the research focuses at present. Based on one coarse particle failure mechanism, a numerical model for particle breakage is developed, in which the nonlinear contact H-Z model and a density-control method are introduced and the variation of a single particle breakage strength and diameter are considered. Based on the proposed model, the biaxial shear test of coarse aggregate is carried out and compared with the laboratory test results. It is shown that the proposed particle breakage numerical model can describe well the relationship between deviatoric stress and axial strain, and the relationship between volume strain and axial strain. The particle breakage ratio obtained by numerical simulation is consistent with the results obtained by laboratory test. The normalized particle breakage ratios under different confining pressures are practically coincident, and can be fitted by a hyperbolic curve function without considering particle breakage in sample preparation and consolidation processes. As the confining pressure increases, the particle breakage ratio increases, and the final grading curve of sample coincides with that proposed by Einav, which has a fractal dimension of 2.6.

Key words: coarse aggregate, particle breakage, gradation curve, numerical simulation

CLC Number: 

  • TV 221.2
[1] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[2] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[3] WU Er-lu, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Experimental study of compaction characteristics of coarse-grained soil based on gradation equation [J]. Rock and Soil Mechanics, 2020, 41(1): 214-220.
[4] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[5] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[6] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[7] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[8] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[9] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[10] WU Mei-su, ZHOU Cheng, WANG Lin, TAN Chang-ming, . Numerical simulation of the influence of roots and fissures on hydraulic and mechanical characteristics of the soil [J]. Rock and Soil Mechanics, 2019, 40(S1): 519-526.
[11] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[12] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[13] SUN Feng, XUE Shi-feng, PANG Ming-yu, TANG Mei-rong, ZHANG Xiang, LI Chuan, . 3D simulation of fracture growth from perforation to near-wellbore in horizontal wells based on continuum damage model [J]. Rock and Soil Mechanics, 2019, 40(8): 3255-3261.
[14] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[15] PENG Yu, DING Xuan-ming, XIAO Yang, CHU Jian, DENG Wei-ting, . Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method [J]. Rock and Soil Mechanics, 2019, 40(7): 2663-2672.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .