›› 2015, Vol. 36 ›› Issue (S1): 646-650.doi: 10.16285/j.rsm.2015.S1.113

• Numerical Analysis • Previous Articles     Next Articles

Discrete element analysis of development and load-transfer mechanism of soil arching within piled embankment

LAI Han-jiang1, ZHENG Jun-jie1, ZHANG Rong-jun1, ZHANG Jun2, CUI Ming-juan1   

  1. 1. Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 2. Key Laboratory of Highway Construction & Maintenance Technology in Loess Region, Shanxi Transportation Research Institute, Taiyuan, Shanxi 030006, China
  • Received:2015-03-10 Online:2015-07-11 Published:2018-06-14

Abstract: Soil arching effect is a key factor for the load transfer in a piled embankment. Based on the previous model test, a DEM model of a piled embankment is conducted by the PFC2D. The development of soil arching with the pile-subsoil relative displacement is analyzed based on the deflection of principal stress direction. Then, a soil arching model with a reasonable arch axis is proposed to depict the soil arching in a piled embankment. Meanwhile, a load-transfer coefficient α is introduced for the quantitative analysis of load transfer between the soil arching and the embankment fill below the arching. Numerical results indicate that the pile-subsoil relative displacement will induce the deflection of principal stress direction, which forms the soil arching in embankment. The features and heights of soil arching are related to the pile-subsoil relative displacement, and the maximum soil arching height is about 0.8 times of clear pile spacing. The decrease in α with the increase of soil arching height is found to follow a logarithmic relation.

Key words: piled embankment, soil arching, stress-deflection, reasonable arch axis, load transfer coefficient

CLC Number: 

  • TU 473
[1] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[2] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[3] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, . A method to calculate rational spacing between pipes in pipe roofs considering soil arching effects [J]. Rock and Soil Mechanics, 2019, 40(5): 1993-2000.
[4] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[5] ZHANG Ling, CHEN Jin-hai, ZHAO Ming-hua. Maximum cantilever anti-slide piles spacing determination with consideration of soil arching effect [J]. Rock and Soil Mechanics, 2019, 40(11): 4497-4505.
[6] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[7] LAI Feng-wen, CHEN Fu-quan, WAN Liang-long,. Vertical stress calculation of shallow foundations based on partially developed soil arching effect [J]. , 2018, 39(7): 2546-2554.
[8] XU Chang-jie, LIANG Lu-ju, CHEN Qi-zhi, LIU Yuan-kun,. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone [J]. , 2018, 39(6): 1927-1934.
[9] NIU Ting-ting, LIU Han-long, DING Xuan-ming, CHEN Yun-min,. Piled embankment model test on vibration characteristics under high-speed train loads [J]. , 2018, 39(3): 872-880.
[10] YANG Gui, WANG Yang-yang, LIU Yan-chen, . Analysis of active earth pressure on retaining walls based on curved sliding surface [J]. , 2017, 38(8): 2182-2188.
[11] LI Rui-lin, ZHOU Guo-qing, LIN Chao, ZHAO Guang-si, CHEN Guo-zhou,. Solution of earth pressure between slip surfaces under non-limit state considering soil arching effect [J]. , 2017, 38(11): 3145-3153.
[12] SUN Xiao-hao, MIAO Lin-chang, LIN Hai-shan. Arching effect of soil ahead of working face in shield tunnel in sand with various depths [J]. , 2017, 38(10): 2980-2988.
[13] ZHU Jian-ming, LIN Qing-tao, GAO Xiao-jiang, GAO Lin-sheng,. Research on space earth pressure behind retaining wall adjacent to existing basements exterior wall [J]. , 2016, 37(12): 3417-3426.
[14] FANG Ying-guang , HOU Ming-xun , GU Ren-guo , FENG De-luan, CHEN Ping,. Experimental analysis of soil arching effect in piled embankment based on granular media [J]. , 2015, 36(S1): 55-60.
[15] LOU Pei-jie,. A method to calculate the active earth pressure with considering soil arching effect under the nonlimit state of clayey soil [J]. , 2015, 36(4): 988-994.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .