›› 2015, Vol. 36 ›› Issue (S2): 148-156.doi: 10.16285/j.rsm.2015.S2.019

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on mechanical response of soft clay under cyclic loading involving principal stress rotation

DENG Peng1,GUO Lin2,CAI Yuan-qiang1, 2,WANG Jun2   

  1. 1. Research Center of Coastal and Urban Geotechnical Engineering,Zhejiang University,Hangzhou,Zhejiang 310058,China; 2. College of Civil Engineering and Architecture,Wenzhou University,Wenzhou,Zhejiang 325035,China
  • Received:2014-04-13 Online:2015-08-31 Published:2018-06-14

Abstract: Parameter values adopted in railway engineering analysis at present are generally obtained through triaxial tests, whereas the remarkable difference between the actual stress path during train passage and the loading path in cyclic triaxial tests may lead to inaccurate predictions and even engineering problems. Published researches show that the actual stress path probably contains principal stress rotation(PSR), which has a sisgnificant influence on the mechanical response of soil. However, the conventional approach, i.e. cyclic triaxial test is not efficient in simulating this complicated stress path involving PSR. Instead, hollow cylinder test with cyclic shear stress has been proved to be an excellent selection for PSR study. In order to obtain reliable stress path for guiding hollow cylinder tests, three-dimensional calculation for a certain urban railway is carried out; and the distribution regularity of cyclic stress amplitudes, cycle numbers and PSR under train loads is analyzed. Furthermore, a series of cyclic torsional shear tests on hollow cylinder samples is employed to simulate the complex stress path and to research the deformation and pore pressure accumulation properties of saturated soft clay. Considering stress in foundation soil decreasing along with the depth increasing, various cyclic stress amplitudes corresponding to different depths are adopted in this experiment study. Three-dimensional calculation shows that the major principal stress axis will rotate from -90° to 90° during the train loading passage as well as the number and amplitude of stress waves reduce gradually with the increase of depth. It is also shown that both PSR and stress are quite sensitive to train loads as the upper soil element can identify a single wheel load while the lower soil element can just identify a bogie and even the whole train load. And through the cyclic torsional shear tests, it’s obvious that the rotation of principal stress can promote the accumulation of pore pressure and strain in soft soil foundations significantly; and in the case when vertical cyclic stress amplitude equals to 15 kPa, the pore pressure and strain in cyclic torsional shear test are 77% and nearly 50% higher than that in cyclic triaxial test respectively. What’s more, as the cyclic stress amplitude increases, the gap of cumulative pore pressure and strain between that two types of tests will enlarge further, which may even result in essential difference that samples in triaxial tests show only small strain whereas failure in torsional shear tests.

Key words: cyclic loading, principal stress rotation, soft clay, mechanical response

CLC Number: 

  • TU 443
[1] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[2] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[3] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[4] JIANG Zhong-ming, LI Peng, ZHAO Hai-bin, FENG Shu-rong, TANG Dong, . Experimental study on performance of shallow rock cavern for compressed air energy storage [J]. Rock and Soil Mechanics, 2020, 41(1): 235-241.
[5] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[6] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[7] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[8] YE Guan-bao, ZHENG Wen-qiang, ZHANG Zhen, . Investigation on distribution of negative friction of frictional piles in large filling sites [J]. Rock and Soil Mechanics, 2019, 40(S1): 440-448.
[9] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[10] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[11] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[12] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[13] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[14] WU Qiu-hong, ZHAO Fu-jun, WANG Shi-ming, ZHOU Zhi-hua, WANG Bin, LI Yu, . Mechanical response characteristics of full grouted rock bolts subjected to dynamic loading [J]. Rock and Soil Mechanics, 2019, 40(3): 942-950.
[15] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[3] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[4] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[5] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[6] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[7] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[8] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[9] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .
[10] SONG Yi-min , JIANG Yao-dong , MA Shao-peng , YANG Xiao-bin , ZHAO Tong-bin . Evolution of deformation fields and energy in whole process of rock failure[J]. , 2012, 33(5): 1352 -1356 .