›› 2016, Vol. 37 ›› Issue (2): 431-438.doi: 10.16285/j.rsm.2016.02.016

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Water inrush failure mechanism of mining floor under unloading effect

ZHANG Feng-da1, 2, SHEN Bao-hong1, 3, KANG Yong-hua2   

  1. 1. School of Resources and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 2. Department of Coal Mining & Designing, Tiandi Science & Technology Co., Ltd., Beijing 100013, China; 3. China Coal Technology & Engineering Group Co., Ltd., Beijing 100013, China
  • Received:2014-11-17 Online:2016-02-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Science and Technology Major Project of China (2011ZX05064) and the Youth Foundation of China Coal Technology & Engineering Group Co., Ltd., (2014QN005).

Abstract: To further understand the failure mechanism of water inrush from mining face floor, the water inrush failure mechanism of mining floor is analyzed using the Mohr diagram and fracture mechanics theory. By considering the effect of saturated pressure on the branching crack tip, an analytical formula for the plastic fractured region and a damage threshold of rock mass failure are established with damage fracture mechanics and the unified strength theory. An equation of damage fracture energy is determined by coupling crack propagation and rock damage, and the factors influencing the damage fracture energy are analyzed in depth. The results show that the stress intensity factor (SIF) of the crack tip at the complete unloading state of the maximum principal stress is higher than that at the biaxial stress state with a confining pressure coefficient 0.5, in which the mining floor has been found to be more prone to failure. By taking into account the influence of the plastic fractured region of the branching crack tip, it is noted that the crack damage fracture energy tends to be higher and water inrush risk of mining floor is more obvious. There is a positive correlation between and the crack half-length a, the ratio of crack connected area to the crack total area , crack seepage pressure and the minimum principal stress . Whereas it shows a negative correlation with the friction coefficient of crack surface and modulus of rock mass . The results provide some insights into the prediction of water inrush failure mechanism of mining floor.

Key words: Mohr circle, seepage pressure, stress intensity factor, unified strength theory, damage and fracture

CLC Number: 

  • TD 745

[1] NIE Zhi-bao, ZHENG Hong, WAN Tao, LIN Shan. The numerical manifold method for boundary integrals in elastostatics [J]. Rock and Soil Mechanics, 2020, 41(4): 1429-1436.
[2] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[3] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[4] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[5] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[6] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[7] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Study on hydraulic fracture of gravity dam using the numerical manifold method [J]. , 2018, 39(8): 3055-3060.
[8] LI Qing, YU Qiang, XU Wen-long, WAN Ming-hua, ZHANG Zheng, Lü Chen, WANG Han-jun,. Experimental research on determination of dynamic stress intensity factor of type-Ⅰ crack using strain gage method [J]. , 2018, 39(4): 1211-1218.
[9] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
[10] SONG Yi-min, XING Tong-zhen, LÜ Xiang-feng, ZHAO Ze-xin, DENG Lin-lin, . Fracture characteristics of granite with mode-I pre-crack at different loading rates [J]. Rock and Soil Mechanics, 2018, 39(12): 4369-4375.
[11] RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, REN Wei-guang, GUO Yi-bao,. A damage-based permeability models of deep coal under mining disturbance [J]. , 2018, 39(11): 3983-3992.
[12] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Application of enriched numerical manifold method to hydraulic fracture [J]. , 2018, 39(10): 3875-3881.
[13] YANG Ren-shu, SU Hong, GONG Yue, CHEN Cheng,. Study on the regularity of asymmetric Y-shaped cracks propagation under blast loading [J]. , 2017, 38(8): 2175-2181.
[14] LI Nian-bin, DONG Shi-ming, HUA Wen. Analysis of the effect of crack face contact on stress intensity factors for a centrally cracked Brazilian disk [J]. , 2017, 38(8): 2395-2401.
[15] ZHANG Jian, WANG Xin-Zheng, HU Rui-lin,. Analysis of seismic active earth pressure of backfill with infinite inclined surface behind non-vertical retaining wall [J]. , 2017, 38(4): 1069-1074.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!