›› 2016, Vol. 37 ›› Issue (7): 1994-2003.doi: 10.16285/j.rsm.2016.07.021

• Geotechnical Engineering • Previous Articles     Next Articles

Slope risk assessment using efficient random finite element method

LI Dian-qing1, 2,XIAO Te1, 2,CAO Zi-jun1, 2,ZHOU Chuang-bing1, 2,PHOON Kok-kwang1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2014-11-24 Online:2016-07-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Science Fund for Distinguished Young Scholars (51225903), the National Basic Research Program of China (973 Program) (2011CB013506) and the National Natural Science Foundation of China (51329901).

Abstract: This paper develops an efficient random finite element method (RFEM) using subset simulation (SS) for slope risk assessment. Equations are derived for integrating SS with RFEM to evaluate slope failure probability and risk, and corresponding implementation procedures are illustrated. The proposed method is validated by using a soil slope example. The results indicate that the efficient RFEM based on SS can be viewed as a development of the original RFEM based on Monte Carlo simulation, and it significantly improves the computational efficiency of evaluating failure probability and risk as well as the ability to generate failure samples, particularly at small probability levels, which enhances the applications of RFEM to the slope reliability analysis and risk assessment. The proposed efficient RFEM expresses the overall slope failure risk as a weighted aggregation of slope failure risk at different probability levels and quantifies the relative contributions of those to the overall risk. In this method, slope reliability analysis and risk assessment are decoupled from the deterministic finite element analysis of slope stability, which highly simplifies the calculation procedures. In addition, it is found that the vertical spatial variability of the undrained shear strength affects the slope failure risk significantly.

Key words: slope stability, reliability, risk assessment, subset simulation, random finite element method

CLC Number: 

  • TU 43

[1] ZHOU Qiang, LI Kang-ping, DUAN Ya-hui, CAO Zi-jun, LI Dian-qing, . Safety criteria for bearing capacity of foundation based on the generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2020, 41(6): 2052-2062.
[2] WU Xing-zheng, WANG Rui-kai, XIN Jun-xia, . Geometric reliability analysis of geotechnical structures at a specific site [J]. Rock and Soil Mechanics, 2020, 41(6): 2070-2080.
[3] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[4] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[5] JIANG Shui-hua, FENG Ze-wen, LIU Xian, JIANG Qing-hui, HUANG Jin-song, ZHOU Chuang-bing. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach [J]. Rock and Soil Mechanics, 2020, 41(1): 325-335.
[6] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[7] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
[8] CHEN Wu, ZHANG Guo-hua, WANG Hao, CHEN Li-biao, . Risk assessment of mountain tunnel collapse based on rough set and conditional information entropy [J]. Rock and Soil Mechanics, 2019, 40(9): 3549-3558.
[9] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[10] HUANG Sheng-gen, SHEN Jia-hong, LI Meng, . Reliability analysis of bearing capacity of post-grouted bored piles [J]. Rock and Soil Mechanics, 2019, 40(5): 1977-1982.
[11] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[12] XIAHOU Yun-shan, ZHANG Shu, TANG Hui-ming, LIU Xiao, WU Qiong, . Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters [J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945.
[13] ZHAO Mi, ZHANG Shao-hua, ZHONG Zi-lan, HOU Ben-wei, DU Xiu-li. Robust geotechnical design of spread foundations [J]. Rock and Soil Mechanics, 2019, 40(11): 4506-4514.
[14] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, XUE Qiang, . Stabilization characteristics and risk assessment of hexavalent chromium-contaminated soils by ferrous sulfate treatment [J]. Rock and Soil Mechanics, 2019, 40(10): 3928-3936.
[15] LI Dian-qing, ZHOU Qiang, CAO Zi-jun, . Safety criteria for geotechnical design based on generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2019, 40(10): 3977-3986.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!