Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (6): 2070-2080.doi: 10.16285/j.rsm.2019.1355

• Geotechnical Engineering • Previous Articles     Next Articles

Geometric reliability analysis of geotechnical structures at a specific site

WU Xing-zheng1, WANG Rui-kai1, XIN Jun-xia2, 3   

  1. 1. College of Civil Engineering and Architecture, Hebei University, Baoding, Hebei 071002, China; 2. Beijing Building Construction Research Institute, Beijing 100039, China; 3. Beijing Construction Engineering Quality First Testing Institute Co., Ltd., Beijing 100039, China
  • Received:2019-08-05 Revised:2019-11-20 Online:2020-06-11 Published:2020-08-02
  • Supported by:
    This work was supported by the General Program of Hebei Natural Science Foundation of China (E2019201296), the Key Project of Science and Technology Research in Colleges and Universities of Hebei Province (ZD2018216) and the Advanced Talents Incubation Program of the Hebei University (801260201262).

Abstract: According to the limit state of geotechnical structures at a specific site under normal conditions of use, the reliability index of various structures is calculated by geometric reliability method that developed in recent years. At the same site, considering the discreteness of load-displacement curves of bored piles, anti-floating anchors and single CFG piles, the regression parameters of these curves show differences and can be regarded as random variables. The correlation and joint distribution characteristics of the site-specific regression parameters are discussed. Based on the joint divergence probability density contour (PDC) of these regression parameters, which means the random variables just reach the critical state of limit bearing capacity, the reliability index of geotechnical structures is calculated by the geometric reliability algorithm in the original space of random variables. The feasibility of geometric reliability algorithm is verified by comparing the geometric reliability index with the results calculated by conventional first-order reliability method. The results show that the geometric reliability evaluation model is simple to implement and can be easily accepted by engineers and technicians.

Key words: discreteness, probability density, goodness-of-fit, bearing capacity, geometric reliability

CLC Number: 

  • TU473
[1] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, XU Yi-fei, . Experimental study on lateral bearing behavior of post-grouted piles in calcareous sand [J]. Rock and Soil Mechanics, 2021, 42(2): 411-418.
[2] REN Lian-wei, REN Jun-yang, KONG Gang-qiang, LIU Han-long, . Field tests on thermo-mechanical response and bearing capacity of PHC energy pile under cooling-heating cyclic temperature [J]. Rock and Soil Mechanics, 2021, 42(2): 529-536.
[3] HUANG Chao-xuan, YUAN Wen-xi, HU Guo-jie, . An estimation method of horizontal bearing capacity of piles after pre-consolidation treatment for layered soft foundation [J]. Rock and Soil Mechanics, 2021, 42(1): 113-124.
[4] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[5] LIU Run, CAO Tian-ming, CHEN Guang-si, ZHANG Hai-yang, LI Cheng-feng. Experimental study of the effect of spudcan penetration and extraction on bearing capacity of an adjacent spudcan [J]. Rock and Soil Mechanics, 2020, 41(9): 2943-2952.
[6] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
[7] WAN Zhi-hui, DAI Guo-liang, GAO Lu-chao, GONG Wei-ming, . A practical method of calculation of bearing capacity and settlement of large-diameter post-grouting piles [J]. Rock and Soil Mechanics, 2020, 41(8): 2746-2755.
[8] ZHOU Qiang, LI Kang-ping, DUAN Ya-hui, CAO Zi-jun, LI Dian-qing, . Safety criteria for bearing capacity of foundation based on the generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2020, 41(6): 2052-2062.
[9] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[10] YANG Xue-xiang, JIAO Yuan-fa, YANG Yu-yi, . Development and test of aerated inflation controlled anchors [J]. Rock and Soil Mechanics, 2020, 41(3): 869-876.
[11] SHI Dan-da, MAO Yi-yao, YANG Yong, YUAN Yuan, HAO Dong-xue, . Experimental study on the deformation characteristics of soils around uplift circular plate anchors using digital image correlation technology [J]. Rock and Soil Mechanics, 2020, 41(10): 3201-3213.
[12] LEI Yong, DENG Jia-zheng, LIU Ze-yu, LI Jun-jie, ZOU Gen. A method to calculate ultimate bearing capacity of rock foundation with cavities considering load position offset [J]. Rock and Soil Mechanics, 2020, 41(10): 3326-3331.
[13] WANG Dong-ying, TANG Hua, YIN Xiao-tao, YANG Guang-hua, JIANG Yan, . Estimation method of ultimate bearing capacity of tunnel-type anchorage based on simplified mechanical model [J]. Rock and Soil Mechanics, 2020, 41(10): 3405-3414.
[14] JIANG Wan-li, ZHU Guo-fu, ZHANG Jie, . A direct high-strain method for the bearing capacity of single piles [J]. Rock and Soil Mechanics, 2020, 41(10): 3500-3508.
[15] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[3] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .
[4] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[5] WEI Xing,HUANG Mao-song. A simple method to predict traffic-load-induced permanent settlement of road on soft subsoil[J]. , 2009, 30(11): 3342 -3346 .
[6] LAN Hai-tao,LI Qian,HAN Chun-yu. Slope stability evaluation based on generalized regression neural network[J]. , 2009, 30(11): 3460 -3463 .
[7] HE Zheng,XU Wei-ya,SHI Chong,LI Ming-wei,ZHAO Yi. 3D dynamic response back analysis of failure mechanisms of a high dip bedding rock slope in earthquake[J]. , 2009, 30(11): 3512 -3518 .
[8] LI Li-ping, LI Shu-cai, CUI Jin-sheng. Experimental research on chemical grout for treating water inrush in rock mass[J]. , 2009, 30(12): 3642 -3648 .
[9] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[10] XU Dong-sheng, WANG Ren, MENG Qing-shan, HU Ming-jian. Field test analysis of dynamic consolidation and replacement sand pile on marine soft soil[J]. , 2009, 30(12): 3831 -3836 .