›› 2016, Vol. 37 ›› Issue (8): 2321-2331.doi: 10.16285/j.rsm.2016.08.026

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of large-strain nonlinear consolidation of double-layer soft clay foundation with considering effect of non-Darcy’s flow

DONG Xing-quan1, LI Chuan-xun1, CHEN Meng-meng1, ZHANG Jun1, XIE Kang-he2   

  1. 1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2016-04-22 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(51109092); the General Program of Post-doctoral Foundation of China(2013M530237) and the Seventh Batch Special Program of Post-doctoral Foundation of China(2014T70479).

Abstract: In the current large-strain consolidation theory of double-layer soft soil foundation, it is assumed that the seepage in the soil follows Darcy’s law. However, it has been recognized that the seepage in soft clay may deviate from Darcy’s law under low hydraulic gradient. The effects of non-Darcy flow, non-linear characteristics, and time-dependent loading are discussed comprehensively, and a model for the finite-strain consolidation is developed in Lagrangian coordinate by employing the excess pore water pressure as variable. Meanwhile, the corresponding finite difference solutions for this model are provided. On this basis, the numerical solutions for the proposed consolidation model are verified by comparing with the numerical solutions for the large-strain consolidation of a single soil layer foundation with non-Darcy’s law. The influences of upper layer parameters m1、i11 and sublayer parameters m2, i12 on consolidation behaviors and the differences in the dissipation of excess pore water pressure and in the consolidation settlement are investigated. The results show that the influences of m1, i11 on consolidation behavior are more evident than m2, i12. The dissipation rate of excess pore water pressure in upper layer increases with the increase in the value of m2 or i12, whereas the consolidation rate of double layer foundation decreases with the increase in the value of m2 or i12. The consolidation rate of double layer foundation under large-strain assumption is larger than that at small-strain, whereas the final settlements under both large-strain assumption and small-strain assumption are the same.

Key words: double-layer foundation, non-Darcy’s flow, large-strain consolidation, nonlinear consolidation, finite difference method

CLC Number: 

  • TU 46+2

[1] MA Jian-jun, HAN Shu-juan, GAO Xiao-juan, LI Da, GUO Ying, . Dynamic response analysis of the partially-embedded single pile affected by scour in layered soils [J]. Rock and Soil Mechanics, 2022, 43(6): 1705-1716.
[2] DONG Jian-hua, WU Xiao-lei, SHI Li-jun, YU Xiao-yan, HE Peng-fei, . Calculation method and analysis of horizontal frost heave effect of L-shaped retaining wall in permafrost regions [J]. Rock and Soil Mechanics, 2022, 43(4): 879-890.
[3] WANG Jie, LI Chuan-xun, GUO Xiao, LU Meng-meng, . Analytical solution for nonlinear consolidation of soft soil with vertical drains by considering time- and depth-variation of well resistance [J]. Rock and Soil Mechanics, 2022, 43(10): 2828-2840.
[4] XIA Cai-chu, XU Ying-jun, WANG Chen-lin, ZHAO Hai-ou, XUE Xiao-dai, . Calculation of air leakage rate in lined cavern for compressed air energy storage based on unsteady seepage process [J]. Rock and Soil Mechanics, 2021, 42(7): 1765-1773.
[5] ZHANG Le, DANG Fa-ning, GAO Jun, DING Jiu-long. Experimental study on the one-dimensional nonlinear consolidation and seepage of saturated clay considering stress history under ramp loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1078-1087.
[6] JIANG Wen-hao, ZHAN Liang-tong. Large strain consolidation of sand-drained ground considering the well resistance and the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2021, 42(3): 755-766.
[7] ZHANG Wen-gang, WANG Qi, CHEN Fu-yong, CHEN Long-long, WANG Lu-qi, WANG Lin, ZHANG Yan-mei, WANG Yu-qi, ZHU Xing, . Reliability analysis of slope and random response of anti-sliding pile considering spatial variability of rock mass properties [J]. Rock and Soil Mechanics, 2021, 42(11): 3157-3168.
[8] HU An-feng, ZHOU Yu-shan, CHEN Yuan, XIA Chang-qing, XIE Kang-he, . Semi-analytical solutions for one-dimensional nonlinear large strain consolidation of structured soft clay [J]. Rock and Soil Mechanics, 2020, 41(8): 2583-2591.
[9] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
[10] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[11] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[12] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[13] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[14] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[15] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .