›› 2016, Vol. 37 ›› Issue (8): 2332-2340.doi: 10.16285/j.rsm.2016.08.027

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test of soil arching effect of anti-slide piles based on infrared thermal imaging technology

JIN Lin, HU Xin-li, TAN Fu-lin, HE Chun-can, ZHANG Han, ZHANG Yu-ming   

  1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2016-03-14 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41272305)and the National Program on Key Basic Research Project of China (973 Program)( 2011CB710604).

Abstract: The physical model test is an effective method for landslide and its anti-slide structure research. The application of infrared thermal imager to landslide physical model test is based on infrared detection and thermal imaging principle. With the infrared thermal imager, the surface temperature of the landslide model can be effectively, accurately and real-timely detected and recorded, which helps to analyze the temperature field variation of the anti-slide pile area and study of the effect of anti-slide pile soil aching from the angle of energy. The experimental results reflect the distribution of temperature field in the anti-slide pile area, prove the existence of the soil arch effect from the temperature field, and reveal the process and mechanism of soil arch formation; Anti-slide pile effectively prevent the landslide thrust expand to the front of the pile, and play the reinforcement effect. The stress field, displacement field and energy of rock and soil masses are interrelated in the process of landslide developing. The application of infrared thermal imaging technology presents a new research method to study the soil arch effect of anti slide piles, which makes it possible to study landslide control structures such as anti-slide piles from the aspects of energy; and its feasibility and reliability has been proved in the physical model test.

Key words: infrared thermal imager, physical model test, soil arch effect, temperature, detection

CLC Number: 

  • TU 470

[1] WANG Lei, ZHANG Rui, YANG Dong, KANG Zhi-qin, ZHANG Peng-yu, . Mechanical properties and strain field evolution of organic-rich shale with variable angle shear at real-time high-temperature [J]. Rock and Soil Mechanics, 2023, 44(9): 2579-2592.
[2] ZENG Zhao-tian, CUI Zhe-qi, SUN De-an, YAO Zhi, PAN Bin, . Temperature effect on water retention capacity of Nanning expansive soil and its microscopic mechanism [J]. Rock and Soil Mechanics, 2023, 44(8): 2177-2185.
[3] ZHANG Jian-xin, MA Chang-hu, LANG Rui-qing, SUN Li-qiang, YANG Ai-wu, LI Di, . Experimental study on mechanical properties of coastal remolded soft soil subjected to the freeze-thaw cycle under confining pressure [J]. Rock and Soil Mechanics, 2023, 44(7): 1863-1874.
[4] LI Bo-nan, FU Wei, ZHANG Xue-bing, . Propagation characteristics of elastic waves in warm ice-rich frozen soil [J]. Rock and Soil Mechanics, 2023, 44(7): 1916-1924.
[5] ZHANG Ping, REN Song, ZHANG Chuang, WU Fei, LONG Neng-zeng, LI Kai-xin, . Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature [J]. Rock and Soil Mechanics, 2023, 44(3): 771-783.
[6] WANG Rui-song, GUO Cheng-chao, LIN Pei-yuan, WANG Fu-ming, . Excavation response analysis of prefabricated recyclable support structure for water-rich silt foundation pit [J]. Rock and Soil Mechanics, 2023, 44(3): 843-853.
[7] CHEN Han-qing, CHENG Hua, RONG Chuan-xin, CAI Hai-bing, YAO Zhi-shu, . Action mechanism between liquid-phase suction and solid-phase ice pressure in frozen soil/rock [J]. Rock and Soil Mechanics, 2023, 44(1): 251-258.
[8] JIA Bao-xin, CHEN Guo-dong, LIU Feng-pu, . Damage constitutive model of rock under high temperature and its verification [J]. Rock and Soil Mechanics, 2022, 43(S2): 63-73.
[9] CHEN Wei-zhi, ZHANG Sha-sha, LI An-hong, . Water and salt migration and deformation response of compacted coarse-grained saline soil under temperature cycle [J]. Rock and Soil Mechanics, 2022, 43(S2): 74-84.
[10] ZHONG Wei, ZHANG Shuai, HE Na, . Experimental study on soil arch behind anti-slide pile based on relative deformation method [J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326.
[11] LI Zhao-chen, ZHU Yong, ZHOU Hui, LI Jing, . Equivalent simulation method of humidity and temperature expansion for subway tunnels in swelling rock considering elastic softening [J]. Rock and Soil Mechanics, 2022, 43(S2): 497-507.
[12] XU Hao-chun, JIN Ai-bing, ZHAO Yi-qing, CHEN Zhe, . Numerical study on Brazilian splitting of heat-treated sandstone under different contact angles [J]. Rock and Soil Mechanics, 2022, 43(S2): 588-597.
[13] GAO Lei, HAN Chuan, HUANG Jian, WANG Yang, ZHOU Le, . Test and analysis of bearing characteristics of energy pile based on BOTDR [J]. Rock and Soil Mechanics, 2022, 43(S1): 117-126.
[14] WANG Yang, CHEN Wen-hua. Nonlinear temperature field of granite fracture tip induced by high natural environmental temperature based on fracture shape function [J]. Rock and Soil Mechanics, 2022, 43(S1): 267-274.
[15] OU Xiao-duo, GAN Yu, PAN Xin, JIANG Jie, QIN Ying-hong, . Experimental study on thermal conductivity of remodel expansive rock and its influence factors [J]. Rock and Soil Mechanics, 2022, 43(S1): 367-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .