Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 771-783.doi: 10.16285/j.rsm.2022.0448

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature

ZHANG Ping1, 2, REN Song1, 2, ZHANG Chuang1, 2, WU Fei1, 2, LONG Neng-zeng1, 2, LI Kai-xin1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
  • Received:2022-04-05 Accepted:2022-07-17 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52074048).

Abstract: This paper aims to reveal the rockburst mechanism of sandstone under cyclic disturbance and high temperature. The uniaxial compression tests and CT scan tests on sandstone after different cyclic amplitudes and temperatures were conducted to investigate the mechanical properties, rockburst tendency and failure characteristics of sandstone specimens. The rockburst tendency and failure characteristics of specimen were analyzed. Results showed that the effects of high temperature and cyclic disturbance on the mechanical properties and rockburst tendency of sandstone were significant. The compressive strength, elastic modulus and rockburst tendency of specimens without cyclic disturbances tended to first increase and then decrease as temperature increased, and the threshold temperature was 200 ℃; while those with cyclic disturbances decreased as temperature increased, and the mechanical properties and rockburst tendency of sandstone decreased with increasing the cyclic stress amplitude. The uniaxial compression failure mode shifted from splitting failure to shear failure with the increase of cyclic amplitude and temperature, and the rockburst tendency had a good negative relationship with the three-dimensional fractal dimension of fracture. In addition, the effect of high temperature on the mechanical properties, rockburst tendency and failure degree of sandstone was stronger than that of cyclic disturbance. The research results can provide theoretical basis and engineering reference for the prevention and control of rockburst in high temperature engineering.

Key words: cyclic disturbance, high temperature, sandstone, mechanical properties, rockburst tendency, failure characteristics

CLC Number: 

  • TU451
[1] LI Man, LIU Xian-shan, PAN Yu-hua, QIAO Shi-hao, HAO Zi-yu, QIAN Lei, LUO Xiao-lei, . Mechanical properties of fractured sandstone after cyclic thermal shock [J]. Rock and Soil Mechanics, 2023, 44(5): 1260-1270.
[2] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[3] WANG Jia-quan, ZHONG Wen-tao, HUANG Shi-bin, TANG Yi, . Experimental study on static and dynamic performances of modular reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2023, 44(5): 1435-1444.
[4] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[5] LIANG Jing-yu, SHEN Wan-tao, LU De-chun, QI Ji-lin, . Uniaxial compression test of frozen sand considering the effect of the deposition angle [J]. Rock and Soil Mechanics, 2023, 44(4): 1065-1074.
[6] LUO Yu-jie, ZHANG Yang, LIU Rong-fei, HU Da-wei, ZHOU Hui, XIAO Hai-bin, . Study of obtaining elastic modulus of tight sandstone based on mm-indentation test [J]. Rock and Soil Mechanics, 2023, 44(4): 1089-1099.
[7] SUN Xiao-ming, JIANG Ming, WANG Xin-bo, ZANG Jin-cheng, GAO Xiang, MIAO Cheng-yu, . Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine [J]. Rock and Soil Mechanics, 2023, 44(3): 624-636.
[8] GUO Jia-qi, CHENG Li-pan, ZHU Bin-zhong, TIAN Yong-chao, HUANG Xin. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131-143.
[9] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[10] JIA Bao-xin, CHEN Guo-dong, LIU Feng-pu, . Damage constitutive model of rock under high temperature and its verification [J]. Rock and Soil Mechanics, 2022, 43(S2): 63-73.
[11] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[12] XU Hao-chun, JIN Ai-bing, ZHAO Yi-qing, CHEN Zhe, . Numerical study on Brazilian splitting of heat-treated sandstone under different contact angles [J]. Rock and Soil Mechanics, 2022, 43(S2): 588-597.
[13] Muhammad Usman Azhar, ZHOU Hui, YANG Fan-jie, GAO Yang, ZHU Yong, LU Xin-jing, FANG Hou-guo, GENG Yi-jun, . Stability of a water diversion tunnel in weak sandstone stratum [J]. Rock and Soil Mechanics, 2022, 43(S2): 626-639.
[14] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[15] WANG Yang, CHEN Wen-hua. Nonlinear temperature field of granite fracture tip induced by high natural environmental temperature based on fracture shape function [J]. Rock and Soil Mechanics, 2022, 43(S1): 267-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHEN Yang, ZHOU Jian, GONG Xiao-nan, LIU Han-long. Experimental study of stress-strain properties of intact soft clay considering the change of principal stress direction[J]. , 2009, 30(12): 3720 -3726 .
[2] LI Li-ping, LI Shu-cai, ZHANG Qing-song. Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels[J]. , 2010, 31(2): 523 -528 .
[3] ZHANG Wen, WANG Ze-wen, LE Li-hua. A mathematical model of nuclide migration and its inverse analysis in dual media[J]. , 2010, 31(2): 553 -558 .
[4] LI Li-hua,CHEN Lun,GAO Sheng-yan. Experimental research on thixotropy of wetland soft soil in Cuihu[J]. , 2010, 31(3): 765 -768 .
[5] HU Ya-yuan. Determination of unloading time based on EVP model[J]. , 2010, 31(6): 1827 -1832 .
[6] ZHANG Ding-wen, HAN Wen-jun, LIU Song-yu. Mechanism of cylindrical cavity expansion under anisotropic initial stress state[J]. , 2010, 31(S2): 104 -108 .
[7] LI Ke-gang, HOU Ke-peng, LI Wang. Research on influences of factors dynamic weight on slope stability[J]. , 2009, 30(2): 492 -496 .
[8] HONG Yong, SUN Tao, LUAN Mao-tian, ZHENG Xiao-yu, WANG Fa-wu. Development and application of geotechnical ring shear apparatus: an overview[J]. , 2009, 30(3): 628 -633 .
[9] ZHANG Qian-bing, ZHU Wei-shen, LI Yong, SUN Lin-feng, ZHANG Lei. Design of mini multipoint extensometer in geomechanical model test of cavern group and its application[J]. , 2011, 32(2): 623 -628 .
[10] LI Jing-shuang, HOU Yu-jing, XU Ze-ping, LIANG Jian-hui, ZHANG Xue-dong, SONG Xian-hui. Centrifugal modeling of seismic response of free-field sand ground under horizontal and vertical earthquakes[J]. , 2011, 32(S2): 208 -214 .