Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1260-1270.doi: 10.16285/j.rsm.2022.0900

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical properties of fractured sandstone after cyclic thermal shock

LI Man1, 2, LIU Xian-shan1, 2, PAN Yu-hua2, QIAO Shi-hao2, HAO Zi-yu2, QIAN Lei2, LUO Xiao-lei2   

  1. 1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, China; 2. School of Civil Engineering, Chongqing University, Chongqing, 400045, China; 3. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, Chongqing 400045, China
  • Received:2022-06-14 Accepted:2022-09-18 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (52279094) and the Key Research and Development Program of Guangxi (AB20238036).

Abstract: The stimulation of thermal reservoir in sandstone and long-term stability evaluation are of great significance to the development of geothermal energy. The mechanical properties of fractured sandstone under 0-8 thermal shocks are studied in this paper. The experimental results show that the P-wave velocity, uniaxial compressive strength and elastic modulus of the fractured sandstone all decrease gradually with the increase of the number of thermal shocks under two types of cooling methods. Compared with cooling method in water, the natural cooling method in air has less damage to mechanical properties of fractured sandstone. The uniaxial compressive strength and elastic modulus of fractured sandstone show a good exponential function relationship with the number of thermal shocks. Both the P-wave velocity and the elastic modulus can be used to describe the damage of the fractured sandstone with the number of thermal shocks. The first thermal shock weakens the mechanical properties of fractured sandstone most severely, and the deterioration effect of mechanical properties is significantly slowed down when the number of thermal shocks exceeds 4. In addition, the uniaxial compressive strength and elastic modulus of fractured sandstone also have a good exponential function relationship with the P-wave velocity. Finally, the thermal shock process of sandstone samples is simulated in COMSOL Multiphysics, and the effects of heat transfer coefficient and prefabricated cracks on the internal temperature field and stress field of sandstone are discussed, revealing the mechanism of thermal cracking in sandstone under thermal shock effect.

Key words: sandstone, prefabricated fissure, cyclic thermal shock, damage evolution, thermal cracking

CLC Number: 

  • TU 452
[1] LUO Yu-jie, ZHANG Yang, LIU Rong-fei, HU Da-wei, ZHOU Hui, XIAO Hai-bin, . Study of obtaining elastic modulus of tight sandstone based on mm-indentation test [J]. Rock and Soil Mechanics, 2023, 44(4): 1089-1099.
[2] SUN Xiao-ming, JIANG Ming, WANG Xin-bo, ZANG Jin-cheng, GAO Xiang, MIAO Cheng-yu, . Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine [J]. Rock and Soil Mechanics, 2023, 44(3): 624-636.
[3] ZHANG Ping, REN Song, ZHANG Chuang, WU Fei, LONG Neng-zeng, LI Kai-xin, . Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature [J]. Rock and Soil Mechanics, 2023, 44(3): 771-783.
[4] Muhammad Usman Azhar, ZHOU Hui, YANG Fan-jie, GAO Yang, ZHU Yong, LU Xin-jing, FANG Hou-guo, GENG Yi-jun, . Stability of a water diversion tunnel in weak sandstone stratum [J]. Rock and Soil Mechanics, 2022, 43(S2): 626-639.
[5] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[6] ZHOU Hui, SONG Ming, ZHANG Chuan-qing, YANG Fan-jie, LU Xin-jing, FANG Hou-guo, DENG Wei-jie, . Experimental study of influences of water on mechanical behaviors of argillaceous sandstone under tri-axial compression [J]. Rock and Soil Mechanics, 2022, 43(9): 2391-2398.
[7] QU Yong-long, YANG Geng-she, XI Jia-mi, HE Hui, DING Xiao, ZHANG Meng, . Deformation and failure characteristics of Cretaceous sandstone under low temperature and loading [J]. Rock and Soil Mechanics, 2022, 43(9): 2431-2442.
[8] HE Gui-cheng, XIE Yuan-hui, LI Yong-mei, LI Chun-guang, TANG Meng-yuan, ZHANG Zhi-jun, WU Ling-ling. Experimental study of impermeability of sandstone uranium ore by microbial cementation [J]. Rock and Soil Mechanics, 2022, 43(9): 2504-2514.
[9] ZHANG Hui-mei, WANG Yun-fei. Multi-scale analysis of damage evolution of freezing-thawing red sandstones [J]. Rock and Soil Mechanics, 2022, 43(8): 2103-2114.
[10] YANG Ke, ZHANG Zhai-nan, CHI Xiao-lou, LÜ Xin, WEI Zhen, LIU Wen-jie, . Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(7): 1791-1802.
[11] WANG Yan-xing, LI Chi, GE Xiao-dong, GAO Li-ping, . Experimental study on improvement of weathered Pisha sandstone soil in Inner Mongolia section of the Yellow River Basin based on microbially induced carbonate precipitation technology [J]. Rock and Soil Mechanics, 2022, 43(3): 708-718.
[12] TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG Jin-chang, LUO Yu-long, ZHAN Mei-li. Study on permeability characteristics of sandstone considering pore compression sensitivity at different scales [J]. Rock and Soil Mechanics, 2022, 43(2): 405-415.
[13] JIN Jie-fang, XU Hong, YU Xiong, LIAO Zhan-xiang. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone [J]. Rock and Soil Mechanics, 2022, 43(12): 3231-3240.
[14] JIANG De-yi, GUO Peng-yu, FAN Jin-yang, CHEN Bo, CHEN Jie, . Effect of heating rate on macro and mesoscopic properties of sandstone after high temperature [J]. Rock and Soil Mechanics, 2022, 43(10): 2675-2688.
[15] ZHANG Chao, YANG Chu-qing, BAI Yun. Investigation of damage evolution and its model of rock-like brittle materials [J]. Rock and Soil Mechanics, 2021, 42(9): 2344-2354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .