Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2675-2688.doi: 10.16285/j.rsm.2021.2102

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of heating rate on macro and mesoscopic properties of sandstone after high temperature

JIANG De-yi1, 2, GUO Peng-yu1, 2, FAN Jin-yang1, 2, CHEN Bo1, 2, CHEN Jie1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
  • Received:2021-12-13 Revised:2022-06-24 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51834003, 51904039).

Abstract:

After sandstone is subjected to high temperature, the macro and micro properties will change to different degrees. 400 ℃ and 1 000 ℃ are two important nodes in the change of the macro and meso properties of sandstone. In order to further study the influence of heating rate on the physical properties, mechanical properties and internal meso-fracture of sandstone, the uniaxial compression experiment of sandstone under different heating rates was carried out with 350 ℃ and 950 ℃. The whole process of uniaxial compression was monitored by acoustic emission, and scanning electron microscope was used to analyze the meso-morphology of destructed sandstone. After treated at different heating rates, 350 ℃ sandstone has little change in the mass, volume, density and longitudinal wave velocity, while 950 ℃ sandstone decreased significantly in the mass, density and longitudinal wave velocity, and increased remarkably in the volume, and the higher heating rate, the smaller change rate. The stress-strain curve, stress-volume strain curve, compressive strength and elastic modulus of the 350 ℃ sandstone are virtually unaffected due to the heating rate. The stress-strain curve of the sandstone sample at 950 ℃ is upwardly biased with the increase of the heating rate, the compressive strength and elastic modulus first increase and then reach a constant value; the cumulative ring-down counts of acoustic emission of sandstone at 350 ℃ and 950 ℃ have a tendency to decrease with the increase of heating rate. When the temperature is 950 ℃ and the heating rate is 1 ℃/min, the cumulative ring-down counts of sandstone and the sudden acoustic emission area are the largest; scanning electron microscopy analysis of sandstones with different heating rates showed that heating rate has little effect on the mesoscopic morphology of 350 ℃ sandstone; with the decrease of the heating rate, the number of microcracks and micropores of 950 ℃ sandstone will  increase, the volume size of microcracks and micropores will also increase.

Key words: high temperature sandstone, heating rate, mechanical properties, acoustic emission, meso-analysis

CLC Number: 

  • TU 45
[1] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[2] LI Dong-dong, SHENG Qian, XIAO Ming, WANG Xiao-mao, . Meso-mechanism of surrounding rock local damage of underground powerhouse cavern based on improved particle flow acoustic emission sheet [J]. Rock and Soil Mechanics, 2022, 43(S2): 117-129.
[3] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[4] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[5] WANG Li, NI Bin, XIE Wei, WANG Shu-zhao, KOU Kun, ZHAO Kui, . Microscopic-macroscopic crack evolution mechanism of yellow sandstone with different particle sizes [J]. Rock and Soil Mechanics, 2022, 43(S2): 373-381.
[6] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[7] ZHU Xing, LIU Han-xiang, HU Jie-wei, FAN Jie, . Experimental study on precursory characteristics of acoustic emission of sandstone failure based on critical slowing down [J]. Rock and Soil Mechanics, 2022, 43(S1): 164-172.
[8] HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, . Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics [J]. Rock and Soil Mechanics, 2022, 43(S1): 542-552.
[9] MA Li-yao, HU Bin, CHEN Yong, CUI Kai, DING Jing, . Shear-seepage properties of intact argillaceous shale under different injection water pressures [J]. Rock and Soil Mechanics, 2022, 43(9): 2515-2524.
[10] SUN Bing, TANG Wen-fu, ZENG Sheng, HOU Shan-shan, FANG Yao-chu, . Statistical analysis of rock acoustic emission energy and waiting time based on self-organized criticality theory [J]. Rock and Soil Mechanics, 2022, 43(9): 2525-2538.
[11] LIU Cheng-yu, ZHENG Dao-zhe, ZHANG Xiang-xiang, CHEN Cheng-hai, CAO Yang-bing, . Influence of freeze-thaw temperature change rate on mechanics feature of rock during loading process [J]. Rock and Soil Mechanics, 2022, 43(8): 2071-2082.
[12] LIU Xu-feng, ZHOU Yang-yi, . Experimental study on mechanical properties of layered hard schist under multiaxial compression [J]. Rock and Soil Mechanics, 2022, 43(8): 2213-2221.
[13] ZHONG Wen, ZHU Wen-tao, ZENG Peng, HUANG Zhen, , WANG Xiao-jun, , GUO Zhong-qun, HU Kai-jian, . Experimental study of the influence of leaching mining on mechanical properties of ionic rare earth ore floor bedrock [J]. Rock and Soil Mechanics, 2022, 43(6): 1481-1492.
[14] WANG Gang, SONG Lei-bo, LIU Xi-qi, BAO Chun-yan, LIN Man-qing, LIU Guang-jian, . Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite [J]. Rock and Soil Mechanics, 2022, 43(6): 1533-1545.
[15] HOU Kui-kui, WU Qin-zheng, ZHANG Feng-peng, PENG Chao, LIU Huan-xin, LIU Xing-quan, . Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress [J]. Rock and Soil Mechanics, 2022, 43(4): 1093-1104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .