Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2689-2697.doi: 10.16285/j.rsm.2022.0637

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Modification of linear regression method for rock shear strength parameters under triaxial condition

LI Bin1, WANG Da-guo2, HE Zhi-liang1, WANG Peng1   

  1. 1. School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; 2. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2022-05-01 Revised:2022-07-05 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51904248, 42171108).

Abstract:

The triaxial strength envelope of rocks is usually nonlinear, and the shear strength parameters obtained by the linear regression method (LRM) are highly sensitive to confining pressure. In order to enable LRM to consider the influence of confining pressure on the estimation of shear strength parameters, the confining pressure effect coefficient of triaxial strength of rocks is defined. An exponential function is constructed to express the relationship between the coefficient and confining pressure, which is also introduced into the correction of LRM. A linear regression method considering confining pressure effects (CCPE-LRM) is proposed. At the same time, a rationality test method is proposed, and a distance coefficient is defined as an index to characterize the difference between the estimated and actual values of shear strength parameters. Through the verification and analysis of the triaxial strength data of various types of rocks in the published literature, the results show that the distance coefficients of various rocks are small, and the shear strength envelopes obtained by CCPE-LRM are all close to the Mohr circles in an approximately tangent state. It indicates that the shear strength envelope obtained by CCPE-LRM can replace the ideal shear strength envelope to a certain extent, and the shear strength parameters estimated by this method are in good agreement with the theoretical shear strength parameters. These prove that CCPE-LRM LRM has a good applicability.

Key words: 1. School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China, 2. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China

CLC Number: 

  • TU 452
[1] WANG Pei-tao, LIU Zhi-chao, MA Chi, PENG A-xiao, REN Fen-hua, CAI Mei-feng, . Investigation of fast identification of joint traces information of rock mass based on Hough detection method and its application [J]. Rock and Soil Mechanics, 2022, 43(10): 2887-2897.
[2] KANG Yong-shui, GENG Zhi, LIU Quan-sheng, LIU Bin, ZHU Yuan-guang, . Research progress on support technology and methods for soft rock with large deformation hazards in China [J]. Rock and Soil Mechanics, 2022, 43(8): 2035-2059.
[3] LU Ying-fa, HU Peng, ZHONG Yao, ZHANG Yu-fang, JIANG Jun-jie, . Control design based on progressive failure characteristics of slope: taking Budaiying slope in Shiyan city, Hubei province as an example [J]. Rock and Soil Mechanics, 2022, 43(8): 2277-2286.
[4] JIANG Wei, OUYANG Ye, YAN Jin-zhou, WANG Zhi-jian, LIU Li-peng, . Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering [J]. Rock and Soil Mechanics, 2022, 43(8): 2287-2295.
[5] YU Hong-dan, WANG Zhen, CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, YANG Hai-yan, . Experimental study on the hydro-mechanical behavior of a clayey rock [J]. Rock and Soil Mechanics, 2022, 43(8): 2165-2175.
[6] LI Ran, WANG Sheng-tao, ZHANG Ding-li, CHEN Ping, PAN Hong-gui, LI Ao, . Control mechanism and engineering application of pillar-reinforcing bolt in closely spaced tunnels [J]. Rock and Soil Mechanics, 2022, 43(7): 1865-1876.
[7] HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, . Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics [J]. Rock and Soil Mechanics, 2022, 43(S1): 542-552.
[8] CUI Zhen, SHENG Qian, LI Jian-he, FU Xing-wei, . Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact [J]. Rock and Soil Mechanics, 2022, 43(5): 1364-1373.
[9] PENG Shou-jian, ZHANG Qian-wen, XU Jiang, CHEN Yi-an, CHEN Can-can, CAO Qi, RAO Hao-kui, . Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(5): 1197-1206.
[10] FAN Jie, ZHU Xing, HU Ju-wei, TANG Yao, HE Chun-lei, . Experimental study on crack propagation and damage monitoring of sandstone using three-dimensional digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(4): 1009-1019.
[11] HOU Kui-kui, WU Qin-zheng, ZHANG Feng-peng, PENG Chao, LIU Huan-xin, LIU Xing-quan, . Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress [J]. Rock and Soil Mechanics, 2022, 43(4): 1093-1104.
[12] ZHAO Hong-gang, ZHANG Dong-ming, JIANG Chang-bao, YU Bei-chen, . Mechanical response and failure characteristics of rock mass considering the thickness of weak interlayer [J]. Rock and Soil Mechanics, 2022, 43(4): 969-980.
[13] XIAO Jian-cheng, ZHOU Hui, LU Jing-jing, FENG Chun, XU Fu-tong, . Study on milling process and optimization of pick entry sequence of double-wheel trench cutter [J]. Rock and Soil Mechanics, 2022, 43(4): 981-994.
[14] DAI Bei-bing, LI Tian-qi, YANG Jun, LIU Feng-tao, . An experimental investigation of the fabric effect on angle of repose [J]. Rock and Soil Mechanics, 2022, 43(4): 957-968.
[15] SHU Jin-hui , MA Qiang, ZHOU Feng-xi, LI Qiang, . Propagation characteristics of P1 wave passing through wave impeding block in unsaturated soil [J]. Rock and Soil Mechanics, 2022, 43(4): 1135-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .