Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2287-2295.doi: 10.16285/j.rsm.2021.1578

• Geotechnical Engineering • Previous Articles     Next Articles

Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering

JIANG Wei1, 2, 3, OUYANG Ye1, YAN Jin-zhou1, WANG Zhi-jian1, LIU Li-peng3   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. College of Civil Engineering and Architecture, China Three Gorges University, Yichang, Hubei 443002, China; 3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2021-09-17 Revised:2022-03-03 Online:2022-08-11 Published:2022-08-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52079070), the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (IWHR-SKL-202020) and the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education (2020KDZ10).

Abstract:

For slopes that has failed or deformed significantly, the shear strength of rock and soil mass is frequently inversely estimated based on a factor of safety assumed. For the slope with a sliding surface passing through multi-layer rock and soil mass, it is unreasonable to achieve this goal by trial and error. To solve this issue, back propagation (BP) neural network is constructed using shear strength of multi-layer rock and soil mass as the input and the factor of safety of the slope, and the entry and exit positions of the sliding surface obtained by GeoSlope as the outputs. Then, based on the assumed factor of safety and the entry and exit positions measured in site, the shear strength is acquired by carrying out the “reverse back analysis-error check-sample correction” procedure repeatedly. The result of a case study verifies that the shear strength obtained by this method is reasonable and can be used as a reference when designing prevention measures for small-scale slopes. BP neural network usually considers the known information as the input, and the information to be determined as the output, which will induce a mathematical underdetermined problem when solving this issue. The proposed method avoids this demerit successfully, and has a lower requirement on the number of samples in the library and a higher precision compared to the classical BP neural network.

Key words: slope prevention, neural network, parameter inversion, reverse iteration, underdetermined problems

CLC Number: 

  • TU 452
[1] JIANG Yu-hang, WANG Wei, ZOU Li-fang, WANG Ru-bin, LIU Shi-fan, DUAN Xue-lei, . Research on dynamic prediction model of landslide displacement based on particle swarm optimization-variational mode decomposition, nonlinear autoregressive neural network with exogenous inputs and gated recurrent unit [J]. Rock and Soil Mechanics, 2022, 43(S1): 601-612.
[2] YAN Chang-bin, WANG He-jian, YANG Ji-hua, CHEN Kui, ZHOU Jian-jun, GUO Wei-xin, . Predicting TBM penetration rate with the coupled model of partial least squares regression and deep neural network [J]. Rock and Soil Mechanics, 2021, 42(2): 519-528.
[3] FANG Yu-wei, WU Zhen-jun, SHENG Qian, TANG Hua, LIANG Dong-cai, . Intelligent recognition of tunnel stratum based on advanced drilling tests [J]. Rock and Soil Mechanics, 2020, 41(7): 2494-2503.
[4] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[5] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[6] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[7] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[8] WANG Qing-wu, JU Neng-pan, DU Ling-li, HUANG Jian, HU Yong,. Three dimensional inverse analysis of geostress field in the Sangri–Jiacha section of Lasa–Linzhi railway [J]. , 2018, 39(4): 1450-1462.
[9] ZHANG Yan-bo, YANG Zhen, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, SUN Lin,. Experimental study of rockburst early warning method based on acoustic emission cluster analysis and neural network identification [J]. , 2017, 38(S2): 89-98.
[10] ZHANG She-rong, HU An-kui, WANG Chao, PENG Zhen-hui, . Three-dimensional intelligent inversion method for in-situ stress field based on SLR-ANN algorithm [J]. , 2017, 38(9): 2737-2745.
[11] YANG Xiao , YANG Zhi-qiang , GAO Qian , CHEN De-xin,. Cemented filling strength test and optimal proportion decision of mixed filling aggregate [J]. , 2016, 37(S2): 635-641.
[12] WANG Jia-xin, ZHOU Zong-hong, ZHAO Ting, YU Yang-xian, LONG Gang, LI Chun-yang. Application of Alpha stable distribution probabilistic neural network to classification of surrounding rock stability assessment [J]. , 2016, 37(S2): 649-657.
[13] HU Jun , DONG Jian-hua , WANG Kai-kai , HUANG Gui-chen,. Research on CPSO-BP model of slope stability [J]. , 2016, 37(S1): 577-582.
[14] WANG Kai-he, LUO Xian-qi, SHEN Hui, ZHANG Hai-tao. GSA-BP neural network model for back analysis of surrounding rock mechanical parameters and its application [J]. , 2016, 37(S1): 631-638.
[15] CHEN Jian, WANG Zhan-sheng, RONG Hu-reng,. ‘Two sides of one’ method for inversion of correlated parameters random fields [J]. , 2016, 37(6): 1773-1780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .