Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (7): 2494-2503.doi: 10.16285/j.rsm.2019.1632

• Numerical Analysis • Previous Articles     Next Articles

Intelligent recognition of tunnel stratum based on advanced drilling tests

FANG Yu-wei1, 2, WU Zhen-jun1, 2, SHENG Qian1,2, TANG Hua1, 2, LIANG Dong-cai1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
  • Received:2019-09-22 Revised:2019-12-30 Online:2020-07-10 Published:2020-09-20
  • Supported by:
    This work was supported by the Science and Technology Program of Yunnan Transportation Department (Yunjiao Science and Education(2018)No.18).

Abstract: The reliable recognition of strata in front of tunnel face is significant for the stability and safety of the tunnel engineering project. Traditional advanced geological forecasting methods could not ensure high identification accuracy, low cost and short construction time simultaneously, and they can’t satisfy the universality of stratum identification under different geological conditions. The advanced forecasting efficiency could be significantly enhanced if the drilling data of surrounding rocks in front of the tunnel face can be obtained while performing the conventional advanced borehole to attain the rock conditions at different drilling depths in real time, which would be convenient and efficient by not affecting the construction period. However, no objective and accurate stratum identification methods are found. In this paper, we proposed an intelligence analysis of drilling data and stratum recognition method based on neural network. It is used to analyze the advanced drilling test data of Jiudingshan Tunnel of Chuxiong-Dali highway and the analysis method was verified by the strata exposed after tunnel excavation. The results show that the error rate of stratum recognition using the single drilling parameter is about 35%. The combination of blow energy and blow number, water pressure and water flow water cannot significantly improve the accuracy of stratum recognition. The combination of drilling speed, torque, rotation speed and propulsion can reduce the error rate to 22% for stratum recognition. The error rate can be sharply decreased by 9%~12% when the standard deviation of drilling parameters is introduced into the neural network model. The error rate of stratum recognition is less than 10% for random sampled data and it is less than 14% for a single borehole using the neural network model with the combination of multiple drilling test parameters.

Key words: drilling test, neural networks, tunnel, stratum, intelligent recognition

CLC Number: 

  • P 634
[1] WU Ben, LIU Wei, SHI Pei-xin, FU Chun-qing, . Two-dimensional spiral failure model of the heading face of shield tunneling [J]. Rock and Soil Mechanics, 2021, 42(3): 767-774.
[2] YAN Chang-bin, WANG He-jian, YANG Ji-hua, CHEN Kui, ZHOU Jian-jun, GUO Wei-xin, . Predicting TBM penetration rate with the coupled model of partial least squares regression and deep neural network [J]. Rock and Soil Mechanics, 2021, 42(2): 519-528.
[3] JI Wei-wei, KONG Gang-qiang, LIU Han-long, YANG Qing, . Field tests on thermal response characteristics of the tunnel invert in soft plastic loess area [J]. Rock and Soil Mechanics, 2021, 42(2): 558-564.
[4] SHI Jiang-wei, FAN Yan-bo, PEI Wei-wei, CHEN Yong-hui, ZHANG Xian, . An investigation of deformation mechanisms of jointed pipelines due to underneath tunnel excavation [J]. Rock and Soil Mechanics, 2021, 42(1): 143-150.
[5] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
[6] LIU Yang, LIU Wei, SHI Pei-xin, ZHAO Yu, WANG Miao, . Local instability analysis of the ultra-deep wall-to-slotted in water rich soft layer [J]. Rock and Soil Mechanics, 2020, 41(S1): 9-18.
[7] XU Ri-qing, CHENG Kang, YING Hong-wei, LIN Cun-gang, LIANG Rong-zhu, FENG Su-yang, . Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect [J]. Rock and Soil Mechanics, 2020, 41(S1): 195-207.
[8] ZHENG Gang, LI Qing-han, CHENG Xue-song, HA Da, ZHAO Yue-bin. Theory and design of fast decompression and recharge of confined layer applied in tunnel emergency rescue [J]. Rock and Soil Mechanics, 2020, 41(S1): 208-216.
[9] XUE Ya-dong, ZHOU Jie, ZHAO Feng, LI Xing. Rock breaking mechanism of TBM cutter based on MatDEM [J]. Rock and Soil Mechanics, 2020, 41(S1): 337-346.
[10] ZHU Cai-hui, LAN Kai-jiang, DUAN Yu, HE Hong. The control technology of air shaft cross passage construction in Xi’an subway with "tunnel first then well" method [J]. Rock and Soil Mechanics, 2020, 41(S1): 379-386.
[11] CHEN You-liang, LIU Geng-yun, DU Xi, RAFIG Azzam, WU Dong-peng, . Elastoplastic solution for a deep-buried tunnel considering swelling stress and dilatancy [J]. Rock and Soil Mechanics, 2020, 41(8): 2525-2535.
[12] LIU Cheng-yu, SHI Jun-jie, LUO Hong-lin, CHENG Kai, CHEN Bo-wen, . Variation law of electromagnetic radiation intensity parameters during tunnel deformation [J]. Rock and Soil Mechanics, 2020, 41(8): 2722-2729.
[13] ZHANG Jin-xun, QI Yi, YANG Hao, SONG Yong-wei. Temperature field expansion of basin-shaped freezing technology in sandy pebble stratum of Beijing [J]. Rock and Soil Mechanics, 2020, 41(8): 2796-2804.
[14] HOU Gong-yu, LI Zi-xiang, HU Tao, ZHOU Tian-ci, XIAO Hai-lin, . Study on boundary effect of embedded optical fiber sensor in tunnel structure [J]. Rock and Soil Mechanics, 2020, 41(8): 2839-2850.
[15] MAO Jia-hua, YUAN Da-jun, YANG Jiang-xiao, ZHANG Bing, . A theoretical study of porosity characteristics on the excavation face of slurry shield in sand stratum [J]. Rock and Soil Mechanics, 2020, 41(7): 2283-2292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[4] RONG Guan, WANG Si-jing, WANG En-zhi, LIU Sun-gui. Study of evolutional simulation of Baihetan river valley and evaluation of engineering quality of jointed basalt P2β3[J]. , 2009, 30(10): 3013 -3019 .
[5] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[6] ZHANG Jian-guo, ZHANG Qiang-yong, YANG Wen-dong, ZHANG Xin. Regression analysis of initial geostress field in dam zone of Dagangshan hydropower station[J]. , 2009, 30(10): 3071 -3078 .
[7] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[8] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[9] PAN Yue, QI Yun-song, LI Ai-wu. Discussion on “Surrounding rock instability based on catastrophe model of deep-buried tunnel excavation”[J]. , 2009, 30(10): 3210 -3214 .
[10] XU Han,HUANG Bin,RAO Xi-bao,HE Xiao-min,XU Yan-yong. Consolidation and drainage effect of drilling and sand replacement samples in consolidated drained triaxial tests[J]. , 2009, 30(11): 3242 -3248 .