Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2165-2175.doi: 10.16285/j.rsm.2022.0615

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on the hydro-mechanical behavior of a clayey rock

YU Hong-dan1, WANG Zhen2, CHEN Wei-zhong1, LI Fan-fan3, MA Yong-shang1, YANG Hai-yan4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. China Communications Construction Company, Beijing 100088, China; 3. Engineering Technology Research Institute, Anhui Transportation Consulting & Design Institute Co., Ltd., Hefei, Anhui 230088, China; 4. Jinan Urban Construction Group Co., Ltd., Jinan, Shandong, 250031, China
  • Received:2022-03-31 Revised:2022-06-16 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (51979266, 51879258, 52179113).

Abstract: For the geological disposal of high-level radioactive waste, the geological barrier system, as an important defense, is the last barrier for hazardous substances to enter the environment. Clayey rock, in virtue of its properties, such as low permeability, self-healing, and strong adsorption capacity, is considered a reasonable geological barrier for the disposal of high-level radioactive waste. In this study, the hydro-mechanical coupling mechanism and long-term rheological properties of a clayey rock were studied through a series of laboratory experiments. Triaxial tests show that the compression strength and excess pore water pressure have a positive relation with confining pressure. Permeability tests show the anisotropic hydraulic properties of the clayey rock and the permeability notably decreases under high confining pressure. Creep tests show that creep deformation and creep deformation rate are closely related to the load level. That is to say the larger the load is, the more significant the creep deformation is, the longer it takes for the creep deformation rate to reach stability, and the larger the corresponding steady-state creep rate is. According to the stress threshold and isochronal curve method, the long-term strength of the clayey rock is preliminarily determined to be 1.0-1.2 MPa. The results of this study will be of great significance to the geological disposal and safety assessment of high-level radioactive waste in clayey rock in China.

Key words: geological disposal of high-level radioactive nuclear waste, clayey rock, hydro-mechanical coupling, tests

CLC Number: 

  • TU 452
[1] ZHONG Wei, ZHANG Shuai, HE Na, . Experimental study on soil arch behind anti-slide pile based on relative deformation method [J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326.
[2] XU Long-fei, WENG Xiao-lin, WONG Henry, FABBRI Antonin, ZHU Tan-tan . Development and application of a temperature-humidity controlled triaxial apparatus for earth materials [J]. Rock and Soil Mechanics, 2022, 43(8): 2327-2336.
[3] LI Ming-feng, WANG Yong-zheng, ZHANG Ting-ting, . Experimental study of cyclic dynamic behaviors of saturated soft clay in three-dimensional stress state [J]. Rock and Soil Mechanics, 2022, 43(6): 1523-1532.
[4] YU Hong-dan, CHEN Wei-zhong, LU Chen, YANG Dian-sen, YANG Jian-ping, WANG Zhen, . Experimental and theoretical study of the time-dependent deformation characteristics of clayey rock [J]. Rock and Soil Mechanics, 2022, 43(2): 317-326.
[5] TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG Jin-chang, LUO Yu-long, ZHAN Mei-li. Study on permeability characteristics of sandstone considering pore compression sensitivity at different scales [J]. Rock and Soil Mechanics, 2022, 43(2): 405-415.
[6] HUANG Jia-sheng, WANG Lu-jun, LIU Yan-jing, WANG Xin-bo, ZHU Bin , . Time-dependent behaviour of thermal-hydro-mechanical coupling of gassy soils [J]. Rock and Soil Mechanics, 2021, 42(9): 2507-2517.
[7] MA Cheng-hao, ZHU Chang-qi, LIU Hai-feng, CUI Xiang, WANG Tian-min, JIANG Kai-fang, YI Ming-xing, . State-of-the-art review of research on the particle shape of soil [J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058.
[8] YU Chong, YUE Hao-zhen, LI Hai-bo, ZHOU Chuan-bo, CHEN Shi-hai, SHAO Zhu-shan, . Analysis of blasting control parameters and reliability based on rock mass quality [J]. Rock and Soil Mechanics, 2021, 42(8): 2239-2249.
[9] ZHANG Yu, LI Da-yong, LIANG Hao, ZHANG Yu-kun, . Model tests on horizontal bearing capacity and earth pressure distribution of hollow cone-shaped foundation under horizontal monotonic loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1404-1412.
[10] SHEN Yu-peng, WANG Du-li, LIN Yuan-rong, TANG Tian-xiao, LIU Xin, . On the effect of prevention measures against horizontal frost heave of foundation pits over winter [J]. Rock and Soil Mechanics, 2021, 42(5): 1434-1442.
[11] YANG Jian, JIAN Wen-bin, HUANG Wei, HUANG Cong-hui, LUO Jin-mei, LI Xian-zhong, . Pull-out test and ultimate bearing capacity calculation of grouting branch-type anchor [J]. Rock and Soil Mechanics, 2021, 42(4): 1126-1132.
[12] HOU Zhen-kun, TANG Meng-xiong, HU He-song, LI Jian-hua, ZHANG Shu-wen, XU Xiao-bin, LIU Chun-lin, . Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in-situ and physical simulation tests [J]. Rock and Soil Mechanics, 2021, 42(2): 419-429.
[13] TANG Xiong, LI Xin-po, YAO Jun, SUN Yu-lian, . Soil-water coupling dynamic model based on multiphase material point method [J]. Rock and Soil Mechanics, 2021, 42(12): 3345-3355.
[14] LIU Run, CAO Tian-ming, CHEN Guang-si, ZHANG Hai-yang, LI Cheng-feng. Experimental study of the effect of spudcan penetration and extraction on bearing capacity of an adjacent spudcan [J]. Rock and Soil Mechanics, 2020, 41(9): 2943-2952.
[15] ZHAO Hong-hua, LIU Cong, TANG Xiao-wei, WEI Huan-wei, ZHU Feng, . Study of visualization measurement system of spatial deformation based on transparent soil and three-dimensional reconstruction technology [J]. Rock and Soil Mechanics, 2020, 41(9): 3170-3180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .