Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (7): 1791-1802.doi: 10.16285/j.rsm.2021.1627

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading

YANG Ke1, 2, 3, ZHANG Zhai-nan1, 3, CHI Xiao-lou1, 3, LÜ Xin1, 3, WEI Zhen1, 3, LIU Wen-jie1, 3   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, China; 3. Key Laboratory of Mining Coal Safety and Efficiently Constructed by Anhui Province and Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Received:2021-09-24 Revised:2022-03-28 Online:2022-07-26 Published:2022-08-04
  • Supported by:
    This work was supported by the the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (U21A20110) and the Major Special Projects of Science and Technology in Shanxi Province (20191101016).

Abstract: Based on the engineering background that rock masses of underground reservoirs in mines are frequently disturbed by cyclic loads such as mine earthquake and mining stress, uniaxial compression and cyclic loading tests for sandstones with different water contents were carried out in laboratory. The crack propagation and failure laws of sandstones with different water contents were revealed by digital speckle technique. Based on SEM micro analysis, the micro deterioration mechanism of sandstones with different water contents under cyclic loading was obtained. The test results show that the peak strength of sandstone decreases gradually with the increase of water content under both uniaxial compression and cyclic loading conditions. The peak axial strain variation of dry sandstone experiences four stages of initial deformation, constant velocity deformation, accelerated deformation, and instability failure, and that of the water bearing sandstone experiences three stages of initial deformation, constant velocity deformation, and instability failure. With the increase of water content, the peak axial strain in the corresponding stage gradually decreases. It is verified by the deformation rate analysis method that water has no effect on the deformation memory characteristics of sandstone. Under uniaxial cyclic loading condition, the failure mode of sandstone gradually transits from tension–splitting failure at dryness to tension–shear mixed failure, and presents a single shear failure at saturation. SEM results show that with the increase of water content, the fracture structure plane gradually transits from smooth structure, round structure, and sheet structure to completely broken structure. With the increase of water content, the absolute damage parameter increases, which reflects the positive correlation of water–rock coupling damage, and the cumulative damage parameter larger at the same cycle accumulates faster.

Key words: uniaxial cyclic loading, water bearing sandstone, digital speckle, crack propagation, damage characteristics

CLC Number: 

  • TD 315
[1] XU Hao-chun, JIN Ai-bing, ZHAO Yi-qing, CHEN Zhe, . Numerical study on Brazilian splitting of heat-treated sandstone under different contact angles [J]. Rock and Soil Mechanics, 2022, 43(S2): 588-597.
[2] YANG Hao, WEI Yu-feng, PEI Xiang-jun, ZHANG Yu-yang, . Centrifugal test study of fracture evolution characteristics of anti-dip rock slope with steep and gently dipping structural plane [J]. Rock and Soil Mechanics, 2022, 43(5): 1215-1225.
[3] CHEN Shi-jie, XIAO Ming, WANG Xiao-wei, CHEN Jun-tao, . Numerical analysis of seismic damage characteristics of an underground cavern intersected by a steeply dipped fault [J]. Rock and Soil Mechanics, 2021, 42(9): 2600-2610.
[4] WU Dong-yang, YU Li-yuan, SU Hai-jian, WU Jiang-yu, LIU Ri-cheng, ZHOU Jian. Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(6): 1681-1692.
[5] YANG Liang, YANG Yong-tao, ZHENG Hong. The phase field numerical manifold method for crack propagation in rock [J]. Rock and Soil Mechanics, 2021, 42(12): 3419-3427.
[6] SONG Yi-min, LING Xiao-kang, ZHANG Jing-zong, ZHU Chen-li, REN He, YUAN De-shun. Inversion of mechanical parameters of geomaterials based on DSCM-FEM [J]. Rock and Soil Mechanics, 2021, 42(10): 2855-2864.
[7] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[8] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[9] JIN Ai-bing, WANG Shu-liang, WANG Ben-xin, SUN Hao, CHEN Shuai-jun, ZHU Dong-feng, . Fracture mechanism of specimens with 3D printing cross joint based on DIC technology [J]. Rock and Soil Mechanics, 2020, 41(12): 3862-3872.
[10] LI Xiao-zhao, BAN Li-ren, QI Cheng-zhi, . Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks [J]. Rock and Soil Mechanics, 2020, 41(12): 3987-3995.
[11] JIN Ai-bing, WANG Shu-liang, WANG Ben-xin, SUN Hao, ZHAO Yi-qing, . Study on the fracture mechanism of 3D-printed-joint specimens based on DIC technology [J]. Rock and Soil Mechanics, 2020, 41(10): 3214-3224.
[12] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[13] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[14] SONG Yi-min, DENG Lin-lin, LÜ Xiang-feng, XU Hai-liang, ZHAO Ze-xin, . Study of acoustic emission characteristics and deformation evolution during rock frictional sliding [J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906.
[15] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .