Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1330-1340.doi: 10.16285/j.rsm.2022.0886

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods

TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu   

  1. School of Civil Engineering, Chang’an University, Xi’an, Shaanxi 710061, China
  • Received:2022-06-13 Accepted:2022-07-15 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the Youth Innovation Team of Shaanxi Universities (Disaster Mechanism and Safety Control of Underground Engineering in Complex Geotechnical Environment).

Abstract: 3D printing, a rapid prototyping technology, has great potential for applications in laboratory rock tests, but the low strength and stiffness of 3D printed samples have been one of the key problems that need to be addressed. In order to find a way to enhance the strength and stiffness of 3D printed rock-like samples, GS19 sand and furan resin were selected as printing materials, and sand 3D printed rock-like samples were used as research objects. Based on this, the samples were post-processed using three different methods: vacuum infiltration, low-temperature treatment, and combination of infiltration and low-temperature. Uniaxial compression tests were carried out on these post-processed sand 3D printed rock-like samples to study their mechanical properties, and the reasons for changes in mechanical properties were analyzed at a microscopic level by scanning electron microscopy. The results indicated that different post-processing methods can change the mechanical properties of the samples, and the combination of infiltration and low temperature can significantly enhance the strength and stiffness of samples, which is related to change in the internal cementation state of samples. The findings of the study can provide new research ideas for future application of 3D printing technology in rock testing.

Key words: rock mechanics, 3D printing, post-processing method, mechanical properties, microstructure

CLC Number: 

  • TU 452
[1] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[2] LI Xin-ming, ZHANG Hao-yang, WU Di, GUO Yan-rui, REN Ke-bin, TAN Yun-zhi, . Strength deterioration characteristics of lime-metakaolin improved earthen site soil under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2023, 44(6): 1593-1603.
[3] WANG Jia-quan, ZHONG Wen-tao, HUANG Shi-bin, TANG Yi, . Experimental study on static and dynamic performances of modular reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2023, 44(5): 1435-1444.
[4] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[5] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[6] LIANG Jing-yu, SHEN Wan-tao, LU De-chun, QI Ji-lin, . Uniaxial compression test of frozen sand considering the effect of the deposition angle [J]. Rock and Soil Mechanics, 2023, 44(4): 1065-1074.
[7] ZHANG Ping, REN Song, ZHANG Chuang, WU Fei, LONG Neng-zeng, LI Kai-xin, . Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature [J]. Rock and Soil Mechanics, 2023, 44(3): 771-783.
[8] TIAN Shi-xuan, GUO Bao-hua, SUN Jie-hao, CHENG Tan, . Effect of shear rate on shear mechanical properties of rock-like joints under different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 541-551.
[9] GUO Jia-qi, CHENG Li-pan, ZHU Bin-zhong, TIAN Yong-chao, HUANG Xin. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131-143.
[10] HUANG Xian-wen, YAO Zhi-shu, CAI Hai-bing, LI Kai-qi, TANG Chu-xuan. Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling [J]. Rock and Soil Mechanics, 2023, 44(1): 193-205.
[11] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[12] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[13] ZHANG Tao, XU Wei-ya, MENG Qing-xiang, WANG Huan-ling, YAN Long, QIAN Kun, . Experimental investigation on the mechanical characteristics of columnar jointed rock mass samples based on 3D printing technology [J]. Rock and Soil Mechanics, 2022, 43(S2): 245-254.
[14] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[15] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .