Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (7): 1875-1890.doi: 10.16285/j.rsm.2022.1757

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Energy evolution of sandstone under true triaxial cyclic principal stress

ZHAO Guang-ming1, 2, LIU Zhi-xi1, 2, MENG Xiang-rui1, 2, ZHANG Ruo-fei1, 2, GU Qing-heng1, 2, QI Min-jie1, 2   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. Key Laboratory of Safe and Effective Coal Mining, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Received:2022-11-09 Accepted:2023-02-17 Online:2023-07-17 Published:2023-07-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51974009), Anhui Province Science and Technology Major Project (202203a07020011), Anhui Province “Special Support Plan” Leading Talents Project (T000508), the University Collaborative Innovation Project (GXXT-2021-075), Anhui Province Academic and Technology Leaders Research Activities Fund and Huaibei City Major Science and Technology Project (Z2020005).

Abstract: To explore the influence of true triaxial cyclic loading and unloading in principal stress directions on sandstone energy accumulation and dissipation, three cyclic loading and unloading tests in principal stress directions were carried out by using the self-developed true triaxial disturbed unloading rock testing system. Based on the stress-strain evolution law and the loading and unloading characteristics of true triaxial cyclic loading and unloading tests, the types of loading and unloading in the cyclic loading and unloading tests are classified. Through the comparative analysis of the surface cracks of rock mass after cyclic loading and unloading in three principal stress directions, it is found that the minimum principal stress cycle causes the severest damage to rock mass, followed by the intermediate principal stress, and the maximum principal stress causes the least damage. The elastic energy density, dissipated energy density, and input energy density of true triaxial cyclic loading and unloading are calculated by using the graph area integral method and the superposition method, respectively. The evolution laws of the above three densities with the increase of the number of principal stresses and the energy distribution during loading and unloading are analyzed. The rationality and accuracy of the proposed energy analysis method are verified by the true triaxial loading and unloading test, and the elastic energy released by unloading in three principal stress directions is analyzed. The damage caused by cyclic loading and unloading has little influence on the elastic energy stored in the rock mass. The influences of unloading independently in three principal stress directions on sandstone damage and energy dissipation are compared, and the advancing direction of the roadway is further discussed.

Key words: rock mechanics, true triaxial cyclic loading and unloading, energy accumulation, energy dissipation, loading and unloading classification, energy evolution

CLC Number: 

  • TU451
[1] LUO Guo-li, ZHANG Ke, QI Fei-fei, ZHU Hui, ZHANG Kai, LIU Xiang-hua, . Size effect and anisotropy of mechanical properties of fractured rock masses based on 3D printing [J]. Rock and Soil Mechanics, 2023, 44(增刊): 107-116.
[2] JIANG Ming-gui, SUN Wei, LI Jin-xin, FAN Kai, LIU Zeng, . Analysis of fracture characteristics and energy consumption of full tailings cemented backfill under impact load [J]. Rock and Soil Mechanics, 2023, 44(增刊): 186-196.
[3] LIU Shang, LIU Ri-cheng, LI Shu-chen, YU Li-yuan, HU Ming-hui. Experimental study on evolution of normal stiffness of granite joints treated by chemical corrosion [J]. Rock and Soil Mechanics, 2023, 44(9): 2509-2524.
[4] CAO Rui-lang, WANG Yu-jie, XING Bo, ZHAO Yu-fei, SHEN Qiang . Experimental investigation on quantitative evaluation of rock hardness based on impact energy dissipation index [J]. Rock and Soil Mechanics, 2023, 44(9): 2619-2627.
[5] XIN Zi-peng, CHAI Zhao-yun, SUN Hao-cheng, LI Tian-yu, LIU Xin-yu, DUAN Bi-ying. Post-peak fracture-bearing characteristics and fragmentation distribution of sandy mudstone [J]. Rock and Soil Mechanics, 2023, 44(8): 2369-2380.
[6] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[7] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[8] YU Yang, WANG Ze-hua, TANG Cai-xuan. Energy evolution and fractal characteristics of acid corroded granite under uniaxial compression [J]. Rock and Soil Mechanics, 2023, 44(7): 1971-1982.
[9] LI Chao, MO Pin-qiang, LI Shu-chen, . Large-deformation analysis of spherical cavity expansion problem using energy theory [J]. Rock and Soil Mechanics, 2023, 44(7): 2017-2027.
[10] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[11] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[12] TIAN Shi-xuan, GUO Bao-hua, SUN Jie-hao, CHENG Tan, . Effect of shear rate on shear mechanical properties of rock-like joints under different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 541-551.
[13] XIAO Wei-min, LIN Xin, ZHONG Jian-min, LI Shuang, ZHU Zhan-yuan, . Experimental study on rock joint permeability evolution during plugging process by microbially induced calcite precipitation [J]. Rock and Soil Mechanics, 2023, 44(10): 2798-2808.
[14] GUO Jia-qi, CHENG Li-pan, ZHU Bin-zhong, TIAN Yong-chao, HUANG Xin. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131-143.
[15] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .