Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (S1): 107-116.doi: 10.16285/j.rsm.2022.0757

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Size effect and anisotropy of mechanical properties of fractured rock masses based on 3D printing

LUO Guo-li1, ZHANG Ke1, QI Fei-fei2, ZHU Hui3, ZHANG Kai1, 4, LIU Xiang-hua4   

  1. 1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 2. Water Resources Bureau of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan 675000, China; 3. Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co., Ltd., Kunming, Yunnan 650051, China; 4. Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • Received:2022-05-20 Accepted:2022-06-30 Online:2023-11-16 Published:2023-11-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41762021, 11902128) and the Applied Basic Research Foundation of Yunnan Province (2019FI012).

Abstract: The size effect and anisotropy of the mechanical parameters of fractured rocks are difficult tasks that need to be solved in the field of rock mechanics and engineering. Making full use of the advantages of rapid prototyping and batch preparation of complex internal structure rock models with 3D sand printing technology, the rock-like specimens with different sizes and different rotation angles of the fracture network model are produced by using 3D sand printing, the quartz sand and furan resin are employed as the printing materials. The uniaxial compression test is performed on the 3D sand printed specimens to study the size effect of the mechanical properties of the fracture network rock mass, the correlation between fracture density and strength is revealed and the anisotropy of the mechanical properties of rock masses at the representative elementary volume (REV) scale is analyzed. The test results show that the mechanical properties of 3D sand-printed specimens are similar to those of natural rocks, the stress-strain curves of the fractured network model-like rocks can be divided into four stages: original crack closure stage, linear elastic deformation stage, crack initiation and extension stage, and post-peak stage. There is an exponential decay relationship between uniaxial compressive strength and size of the specimens, and there is an obvious characteristic of size effect. There is a significant negative exponential relationship between fracture density and compressive strength, and the size of the REV determined based on the fracture density and compressive strength is well consistent. The failure patterns and compressive strength of the fractured rocks have obvious anisotropic characteristics. The research approach provides a reliable method for the laboratory experiments to study the size effect and anisotropy of complex fractured rock masses.

Key words: rock mechanics, mechanics parameters, fracture network, 3D printing, size effect, anisotropy

CLC Number: 

  • TU 411
[1] ZHANG Pei-sen, XU Da-qiang, YAN Wei, ZHANG Xiao-le, DONG Yu-hang, ZHAO Ming, . Influence of unloading paths on sandstone damage characteristics and energy evolution law under stress-seepage coupling [J]. Rock and Soil Mechanics, 2024, 45(2): 325-339.
[2] ZHOU Chuang, QIAN Jian-gu , YIN Zhen-yu, . Computational fluid dynamics-discrete element fluidsolid coupling analysis on suffusion in anisotropic sandy soils [J]. Rock and Soil Mechanics, 2024, 45(1): 302-312.
[3] ZHANG Ge, CAO Ling, WANG Cheng-tang, . Development and application of modified linear bond contact model of frozen soil considering anisotropy [J]. Rock and Soil Mechanics, 2023, 44(S1): 645-654.
[4] LIU Shang, LIU Ri-cheng, LI Shu-chen, YU Li-yuan, HU Ming-hui. Experimental study on evolution of normal stiffness of granite joints treated by chemical corrosion [J]. Rock and Soil Mechanics, 2023, 44(9): 2509-2524.
[5] XIN Zi-peng, CHAI Zhao-yun, SUN Hao-cheng, LI Tian-yu, LIU Xin-yu, DUAN Bi-ying. Post-peak fracture-bearing characteristics and fragmentation distribution of sandy mudstone [J]. Rock and Soil Mechanics, 2023, 44(8): 2369-2380.
[6] YU Jun, LI Dong-kai, HE Zhen, ZHANG Zhi-zhong. Analytical solution of anisotropic seepage in dam foundation with anti-seepage walls at both ends [J]. Rock and Soil Mechanics, 2023, 44(8): 2381-2388.
[7] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[8] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[9] WANG Zhi-chao, PENG Yi-qin, QIN Yun, TIAN Ying-hui, LUO Guang-cai, . Stress-induced anisotropic subloading surface model for overconsolidated soil based on unified yield criterion [J]. Rock and Soil Mechanics, 2023, 44(7): 1891-1900.
[10] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[11] YANG Zhong-ping, LI Jin, LIU Hao-yu, ZHANG Yi-ming, LIU Xin-rong, . Influence of the block stone size on shear mechanical behavior of soil-rock mixture-bedrock interface [J]. Rock and Soil Mechanics, 2023, 44(4): 965-974.
[12] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[13] CHEN Xi. A new theoretical peak shear strength criterion of rock joint based on the directional roughness parameter [J]. Rock and Soil Mechanics, 2023, 44(4): 1075-1088.
[14] ZHOU Hang, WU Han, ZENG Shao-hua, . Closed-form solution for cavity expansion in sand based on strain gradient plasticity [J]. Rock and Soil Mechanics, 2023, 44(3): 757-770.
[15] TIAN Shi-xuan, GUO Bao-hua, SUN Jie-hao, CHENG Tan, . Effect of shear rate on shear mechanical properties of rock-like joints under different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 541-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yi-hu, ZHOU Huo-ming, WU Ai-qing. Post processing of discontinuity network modeling result[J]. , 2009, 30(9): 2855 -2861 .
[2] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[3] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[4] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[5] YANG Tian-hong, CHEN Shi-kuo, ZHU Wan-cheng, LIU Hong-lei. Coupled model of gas-solid in coal seams based on dynamic process of pressure relief and gas drainage[J]. , 2010, 31(7): 2247 -2252 .
[6] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[7] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[8] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[9] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[10] HU Cun, LIU Hai-xiao, HUANG Wei. Damage-dependent bounding surface model for cyclic degradation of saturated clay[J]. , 2012, 33(2): 459 -466 .