Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (S1): 645-654.doi: 10.16285/j.rsm.2022.1095

• Numerical Analysis • Previous Articles     Next Articles

Development and application of modified linear bond contact model of frozen soil considering anisotropy

ZHANG Ge1, 2, CAO Ling1, 2, WANG Cheng-tang3   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. College of Civil Engineering & Architecture, China Three Gorges University, Yichang, Hubei 443002, China; 3. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-07-13 Accepted:2022-11-29 Online:2023-11-16 Published:2023-11-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 42207222) and the Key R&D Program of China (2017YFC1501304).

Abstract: Aiming at the anisotropic characteristics of frozen soil, this paper established a modified linear bond contact model that can reflect the anisotropic characteristics of frozen soil based on the linear bond contact model, and generated a discrete element constitutive subroutine (DLL) for particle flow program (PFC3D) calls through C++. Firstly, tensile and shear stimulations were carried out on a single contact. By comparing numerical and theoretical results, the calculation accuracy of the modified linear bond contact model for frozen soil considering orthotropic was verified. In addition, the triaxial compression tests of frozen soil at different temperatures were simulated and compared with the stress-strain curves obtained from the tests. The results show that the proposed modified linear bond contact model has good applicability to frozen soil. Based on the calibrated meso-parameters of the model, a series of triaxial compression discrete element numerical simulations was carried out. Using the simulation results, the influences of the inclination of the virtual weak surface on the stress-strain curve characteristics, strength and shear strength indexes of frozen soil were discussed, and the evolution laws of effective coordination number and meso-fabric quantity were analyzed. The research results can provide a basis for using numerical methods to study the orthotropic macro meso-mechanical properties of frozen soil.

Key words: frozen soil, particle discrete element, modified linear bonding model, secondary development, anisotropy

CLC Number: 

  • TU 411
[1] LIU Tian-xiang, ZHU Hong-hu, WU Bing, LI Hao-jie, HU Le-le, . Progressive failure mechanism of embedded strain sensing cable-frozen soil interface [J]. Rock and Soil Mechanics, 2024, 45(1): 131-140.
[2] ZHOU Chuang, QIAN Jian-gu , YIN Zhen-yu, . Computational fluid dynamics-discrete element fluidsolid coupling analysis on suffusion in anisotropic sandy soils [J]. Rock and Soil Mechanics, 2024, 45(1): 302-312.
[3] LUO Guo-li, ZHANG Ke, QI Fei-fei, ZHU Hui, ZHANG Kai, LIU Xiang-hua, . Size effect and anisotropy of mechanical properties of fractured rock masses based on 3D printing [J]. Rock and Soil Mechanics, 2023, 44(S1): 107-116.
[4] YU Jun, LI Dong-kai, HE Zhen, ZHANG Zhi-zhong. Analytical solution of anisotropic seepage in dam foundation with anti-seepage walls at both ends [J]. Rock and Soil Mechanics, 2023, 44(8): 2381-2388.
[5] WANG Zhi-chao, PENG Yi-qin, QIN Yun, TIAN Ying-hui, LUO Guang-cai, . Stress-induced anisotropic subloading surface model for overconsolidated soil based on unified yield criterion [J]. Rock and Soil Mechanics, 2023, 44(7): 1891-1900.
[6] LI Bo-nan, FU Wei, ZHANG Xue-bing, . Propagation characteristics of elastic waves in warm ice-rich frozen soil [J]. Rock and Soil Mechanics, 2023, 44(7): 1916-1924.
[7] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[8] LIANG Jing-yu, SHEN Wan-tao, LU De-chun, QI Ji-lin, . Uniaxial compression test of frozen sand considering the effect of the deposition angle [J]. Rock and Soil Mechanics, 2023, 44(4): 1065-1074.
[9] CHEN Xi. A new theoretical peak shear strength criterion of rock joint based on the directional roughness parameter [J]. Rock and Soil Mechanics, 2023, 44(4): 1075-1088.
[10] JIANG Hui-peng, MA Qiang, CAO Ya-peng, . Study on the reflection and transmission of P wave on the interface between elastic medium and saturated frozen soil medium [J]. Rock and Soil Mechanics, 2023, 44(3): 916-929.
[11] LIANG Xiao-min, YANG Shuo-cheng, GU Xiao-qiang, . An experimental study on the stress-induced anisotropic elastic wave velocities of sand [J]. Rock and Soil Mechanics, 2023, 44(11): 3235-3240.
[12] HUANG Xian-wen, YAO Zhi-shu, CAI Hai-bing, LI Kai-qi, TANG Chu-xuan. Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling [J]. Rock and Soil Mechanics, 2023, 44(1): 193-205.
[13] WANG Qing-yu, TENG Ji-dong, ZHONG Yu, ZHANG Sheng, SHENG Dai-chao, . Mesoscale simulation of pore ice formation in saturated frozen soil by using lattice Boltzmann method [J]. Rock and Soil Mechanics, 2023, 44(1): 317-326.
[14] ZHANG Tao, XU Wei-ya, MENG Qing-xiang, WANG Huan-ling, YAN Long, QIAN Kun, . Experimental investigation on the mechanical characteristics of columnar jointed rock mass samples based on 3D printing technology [J]. Rock and Soil Mechanics, 2022, 43(S2): 245-254.
[15] BAO Han, CHEN Zhi-yang, LAN Heng-xing, PEI Run-sheng, WU Fa-quan, YAN Chang-gen, TAO Yue, . Progressive failure strength characteristics of anisotropic rocks caused by mineral directional arrangement: a case of biotite quartz schist [J]. Rock and Soil Mechanics, 2022, 43(8): 2060-2070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[2] CHEN Jing-yu , GONG Xiao-nan, DENG Ya-hong. Research on dissipation of excess pore water pressure in one-dimensional finite strain consolidation of soft clays[J]. , 2009, 30(1): 191 -195 .
[3] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[4] SUN Jian , WANG Lian-guo , TANG Fu-rong , SHEN Yi-feng , GONG Shi-long. Microseismic monitoring failure characteristics of inclined coal seam floor[J]. , 2011, 32(5): 1589 -1595 .
[5] YANG Yong-xiang , ZHOU Jian , JIA Min-cai , HU Jin-hu. Visualization testing on liquefaction properties of saturated sands[J]. , 2011, 32(6): 1643 -1648 .
[6] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[7] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[8] WANG Tao , LI Yang , ZHOU Yong , Lü Qing , LIU Da-wei. Research on safety specific report of phosphogypsum tailings ponds[J]. , 2011, 32(S2): 407 -412 .
[9] SHI Lu , LI Xiao-chun , WANG Wei , BAI Bing. Implementation of XFEM’s contact problem based on complementary law[J]. , 2011, 32(12): 3805 -3811 .
[10] ZOU Fei , LI Hai-bo , ZHOU Qing-chun , ZHU Xiao-ming ,. Fractal features study of rock-like material damage based on gray correlation of digital images[J]. , 2012, 33(3): 731 -738 .