Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S2): 245-254.doi: 10.16285/j.rsm.2021.0736

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental investigation on the mechanical characteristics of columnar jointed rock mass samples based on 3D printing technology

ZHANG Tao1, 2, XU Wei-ya1, 2, MENG Qing-xiang1, 2, WANG Huan-ling1, 2, YAN Long1, 2, QIAN Kun1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Institute of Geotechnical Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2021-05-15 Revised:2022-06-13 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This research is supported by the National Key R&D Program of China (2018YFC0407004), the National Natural Science Foundation of China (51939004, 11772118, 11772116), China Postdoctoral Science Foundation (2019M661711) and the Fundamental Research Funds for the Central Universities (B200202083).

Abstract: Based on the geometrical morphology of the columnar jointed rock mass at the dam foundation of Baihetan Hydropower Station, a water-soluble polyvinyl alcohol (PVA) material was introduced, and the columnar jointed rock mass network structure with different inclination angles was established. The columnar jointed rock mass samples were prepared by cement mortar as rock-like materials using 3D printing technology to study the anisotropic mechanical characteristics of the columnar jointed rock mass. The anisotropic mechanical characteristics of columnar jointed rock mass were analyzed by uniaxial compression test in a laboratory. The results show that the anisotropy of columnar jointed rock mass depends on the dip angle of the joint. Peak strength and modulus of columnar jointed rock mass show an approximate “U” shaped curve with the increase of joint dip angle. In the uniaxial compression test, the cleavage cracks perpendicular to the axial direction of the cylinder, the shear cracks along the longitudinal joint plane, and the tensile cracks parallel to the axial direction of the cylinder are mainly produced. According to the evaluation of mechanical anisotropy, it is found that the anisotropy degree of peak strength and residual strength are 0.68 and 0.52, and the anisotropy degree of elastic modulus and deformation modulus are 0.61 and 0.63. The research results provide a reference for the study of the anisotropic mechanical properties of columnar jointed rock mass.

Key words: rock mechanics, columnar jointed rock mass, anisotropy, 3D printing, laboratory test

CLC Number: 

  • TU452
[1] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[2] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
[3] LIU Xue-wei, LIU Quan-sheng, WANG Zhi-qiang, LIU Bin, KANG Yong-shui, WANG Chuan-bing, . Step by step and combined supporting technique with steel grid frame for soft and fractured rock roadway [J]. Rock and Soil Mechanics, 2022, 43(S1): 469-478.
[4] BAO Han, CHEN Zhi-yang, LAN Heng-xing, PEI Run-sheng, WU Fa-quan, YAN Chang-gen, TAO Yue, . Progressive failure strength characteristics of anisotropic rocks caused by mineral directional arrangement: a case of biotite quartz schist [J]. Rock and Soil Mechanics, 2022, 43(8): 2060-2070.
[5] WANG Gang, SONG Lei-bo, LIU Xi-qi, BAO Chun-yan, LIN Man-qing, LIU Guang-jian, . Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite [J]. Rock and Soil Mechanics, 2022, 43(6): 1533-1545.
[6] TANG Xu-hai, XU Jing-jing, ZHANG Yi-heng, HE Qi, WANG Zheng-zhi, ZHANG Guo-ping, LIU Quan-sheng, . Determining mechanical parameters of asteroid rocks using NWA13618 meteorites and microscopic rock mechanics experiment [J]. Rock and Soil Mechanics, 2022, 43(5): 1157-1163.
[7] JIANG Yue, ZHOU Hui, LU Jing-jing, GAO Yang, . True triaxial test on hollow cylindrical sandstone [J]. Rock and Soil Mechanics, 2022, 43(4): 932-944.
[8] JIANG Zhong-ming, XIAO Zhe-zhen, TANG Dong, HE Guo-fu, XU Wei, . Prediction of water inflow in water-sealed oil storage caverns based on fracture seepage effect [J]. Rock and Soil Mechanics, 2022, 43(4): 1041-1047.
[9] ZHANG Hu-yuan, WANG Zhao-ming, ZHU Jiang-hong, ZHOU Guang-ping, . Hydraulic conductivity and anisotropy of hybrid buffer material blocks [J]. Rock and Soil Mechanics, 2022, 43(3): 573-581.
[10] LIU Yang, YU Peng-qiang, XU Shuo. Wave propagation in anisotropic granular materials based on micromorphic continua [J]. Rock and Soil Mechanics, 2022, 43(3): 635-648.
[11] SHARAFUTDINOV Rafael. Statistical and regression analyses of sands stiffness in triaxial tests and application of the results [J]. Rock and Soil Mechanics, 2022, 43(10): 2873-2886.
[12] WANG Pei-tao, LIU Zhi-chao, MA Chi, PENG A-xiao, REN Fen-hua, CAI Mei-feng, . Investigation of fast identification of joint traces information of rock mass based on Hough detection method and its application [J]. Rock and Soil Mechanics, 2022, 43(10): 2887-2897.
[13] CHENG Tan, GUO Bao-hua, SUN Jie-hao, TIAN Shi-xuan, SUN Chong-xuan, CHEN Yan, . Establishment of constitutive relation of shear deformation for irregular joints in sandstone [J]. Rock and Soil Mechanics, 2022, 43(1): 51-64.
[14] SONG Lei-bo, KANG Qian-qian, DU Shi-gui, ZHONG Zhen, WANG Gang, WANG Xing-kai, HAN Guan-sheng, ZHAO Jin-shuai, . Anisotropy mechanism of shear strength based on wear and shear failure evolution of asperities of joint surface [J]. Rock and Soil Mechanics, 2021, 42(9): 2331-2343.
[15] QUE Xiang-cheng, ZHU Zhen-de, NIU Zi-hao, HUANG Hao-nan, . Deformation and strength anisotropy of columnar jointed rock mass with different cross-sectional shapes [J]. Rock and Soil Mechanics, 2021, 42(9): 2416-2426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .