Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (9): 2509-2524.doi: 10.16285/j.rsm.2022.1491

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on evolution of normal stiffness of granite joints treated by chemical corrosion

LIU Shang, LIU Ri-cheng, LI Shu-chen, YU Li-yuan, HU Ming-hui   

  1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2022-09-25 Accepted:2023-01-03 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979272, 52179118), the Natural Science Foundation of Jiangsu Province, China (BK20211584) and the Science and Technology Projects of Jiangsu Provincial Department of Science and Technology (BK20220025).

Abstract: In this study, the variation characteristics of normal stress and normal closure of granite joints were studied. The effect of chemical solution with different pH values (1, 3, 7, 12), the corrosion time t (10, 30, 100 d) and various initial openings b on the evolution of the specific normal stiffness of the specimens were revealed through normal load compression tests taking into account constraint circumferential stiffness boundary conditions. The experimental results indicate that the normal stress-normal strain curves of specimens with mismatched joints are different from the intact specimens and specimens with matched joints. Due to the crushing of the asperity on the surface of the joints, the local stress drop phenomenon occurs during the overall growth process of the stress−strain curves. The normal closing curve of mismatched joints exhibit nonlinear characteristics, in which the increasing rate of normal displacement first increases and then decreases with the increment of normal stress. Under the same normal stress, both the normal displacement and the closing rate increase with the increment of the initial opening. By introducing several classical joint closure models, it is found that the normal stress and stiffness of joints are affected by the initial opening, pH value and corrosion days, among which the initial opening is the most import. When pH = 1 and t = 10 d, with an increase of normal displacement from 1−3 mm, the normal stress of the specimens with b = 1.65 mm increase by 46.26 %−149.46 %, compared with the specimens with b = 3.4 mm. The specific normal stiffness of the mismatched joints decreases with the reduction of pH value. The normal stiffness of joints in different chemical solutions decreases first and increases then as the corrosion time increases.

Key words: rock mechanics, rough joints, normal closure, chemical corrosion, initial opening, normal stiffness

CLC Number: 

  • TU452
[1] LUO Guo-li, ZHANG Ke, QI Fei-fei, ZHU Hui, ZHANG Kai, LIU Xiang-hua, . Size effect and anisotropy of mechanical properties of fractured rock masses based on 3D printing [J]. Rock and Soil Mechanics, 2023, 44(增刊): 107-116.
[2] XIN Zi-peng, CHAI Zhao-yun, SUN Hao-cheng, LI Tian-yu, LIU Xin-yu, DUAN Bi-ying. Post-peak fracture-bearing characteristics and fragmentation distribution of sandy mudstone [J]. Rock and Soil Mechanics, 2023, 44(8): 2369-2380.
[3] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[4] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[5] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[6] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[7] TIAN Shi-xuan, GUO Bao-hua, SUN Jie-hao, CHENG Tan, . Effect of shear rate on shear mechanical properties of rock-like joints under different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 541-551.
[8] XIAO Wei-min, LIN Xin, ZHONG Jian-min, LI Shuang, ZHU Zhan-yuan, . Experimental study on rock joint permeability evolution during plugging process by microbially induced calcite precipitation [J]. Rock and Soil Mechanics, 2023, 44(10): 2798-2808.
[9] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[10] ZHANG Tao, XU Wei-ya, MENG Qing-xiang, WANG Huan-ling, YAN Long, QIAN Kun, . Experimental investigation on the mechanical characteristics of columnar jointed rock mass samples based on 3D printing technology [J]. Rock and Soil Mechanics, 2022, 43(S2): 245-254.
[11] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
[12] LIU Xue-wei, LIU Quan-sheng, WANG Zhi-qiang, LIU Bin, KANG Yong-shui, WANG Chuan-bing, . Step by step and combined supporting technique with steel grid frame for soft and fractured rock roadway [J]. Rock and Soil Mechanics, 2022, 43(S1): 469-478.
[13] WANG Gang, SONG Lei-bo, LIU Xi-qi, BAO Chun-yan, LIN Man-qing, LIU Guang-jian, . Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite [J]. Rock and Soil Mechanics, 2022, 43(6): 1533-1545.
[14] WANG Xue-bin, XUE Cheng-yu, CEN Zi-hao, CHEN Shuang-yin, LIU Tong-xin, . Studies of the normal stiffness coefficient of the potential contact method and modeling of strata motion processes [J]. Rock and Soil Mechanics, 2022, 43(6): 1694-1704.
[15] TANG Xu-hai, XU Jing-jing, ZHANG Yi-heng, HE Qi, WANG Zheng-zhi, ZHANG Guo-ping, LIU Quan-sheng, . Determining mechanical parameters of asteroid rocks using NWA13618 meteorites and microscopic rock mechanics experiment [J]. Rock and Soil Mechanics, 2022, 43(5): 1157-1163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .