Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (9): 2525-2536.doi: 10.16285/j.rsm.2022.1459

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of capillary water rising in aeolian sand using a moisture field testing technique based on image RGB information

TIAN Sheng-kui1, 2, LIU Guan-shi2, ZHAO Qing-song1, 2, XU Guo-fang2, CAI Ming-xuan1, 2   

  1. 1. Guangxi Key Laboratory of Rock and Soil Mechanics and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-09-20 Accepted:2023-01-16 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Sciences Foundation of China (52179115, 52178372).

Abstract: Capillary action has an important impact on the deformation and stability of various geotechnical engineering structures. It is challenging to accurately monitor the dynamic changes in the capillary water rising process by traditional methods. In this study, the relationship between RGB (red, green, blue) information and water content of aeolian sand images was firstly investigated. The methodology and technology for measuring water content and obtaining centimeter-level resolution moisture fields via image RGB information were developed. According to this method, the spatial-temporal variation of water content during capillary water rising in aeolian sand was further explored, and the wetting front profile was precisely distinguished. Furthermore, the wetting front transport law was analyzed. The results show that a negative linear relationship exists between the normalized color feature ξRnor and the water content θ of aeolian sand, which brings about a good prediction for the water content of aeolian sand. The proposed technology for measuring the water content field based on image RGB information, with centimeter-level resolution and high accuracy, can visualize the spatiotemporal changes of the water content during the rising of capillary water in the aeolian sand column. An improved k-means clustering segmentation method was adopted to analyze the sand images of the capillary water rising process, allowing precise identification and quantification of the profile information of the wetting front. This method is more accurate and reliable than the visual inspection method. Under the action of surface tension and inertial force, the water content at each height of the aeolian sand in the initial capillary water rising period has obvious overshoot phenomena. After several small fluctuations, it falls back, and the stable water content is about 1.5% lower than the peak value. The rising height of the capillary water is proportional to relative density Dr. The rising process of the aeolian sand wetting front can be well fitted both by the power and double logarithmic quadratic polynomial functions. The research provides an accurate and rapid novel approach for the capillary water rise test.

Key words: aeolian sand, capillary action, digital image, moisture field, wetting front profile

CLC Number: 

  • TU411
[1] PENG Yang, GAO Yong-tao, WANG Wen-lin, FUER Kate, WEN Jian-min, ZHOU Yu, . Fracture mechanism of coal-rock combination under unilateral confinement compression [J]. Rock and Soil Mechanics, 2023, 44(增刊): 387-398.
[2] GAO Zhi-ao, KONG Ling-wei, WANG Shuang-jiao, LIU Bing-heng, LU Jian-feng, . Deformation behavior and shear zone evolution characteristics of undisturbed expansive soil with different fissure directions under plane strain condition [J]. Rock and Soil Mechanics, 2023, 44(9): 2495-2508.
[3] WANG Lei, ZHANG Rui, YANG Dong, KANG Zhi-qin, ZHANG Peng-yu, . Mechanical properties and strain field evolution of organic-rich shale with variable angle shear at real-time high-temperature [J]. Rock and Soil Mechanics, 2023, 44(9): 2579-2592.
[4] HE Tao, , MAO Hai-tao, , ZHANG Chao, GU Yi. Evolution of perforated cracks in cohesive soil under muddy water seepage [J]. Rock and Soil Mechanics, 2023, 44(9): 2628-2638.
[5] LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie. Lining- stratum interaction mechanism of mountain tunnel based on static pushover model test [J]. Rock and Soil Mechanics, 2023, 44(8): 2318-2326.
[6] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[7] DU Wei, NIE Ru-song, LI Lie-lie, TAN Yong-chang, ZHANG Jie, QI Yan-lu, . Discrete element simulation on aeolian sand-geogrid pull-out test with different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(6): 1849-1862.
[8] CHEN Lei , ZHANG Guang-qing, ZHANG Min, CAO Yu-jie , SHEN Li-ji, . Propagation process of hydraulic fracture crossing an orthogonal discontinuity [J]. Rock and Soil Mechanics, 2023, 44(1): 159-170.
[9] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[10] PENG Shou-jian, ZHANG Qian-wen, XU Jiang, CHEN Yi-an, CHEN Can-can, CAO Qi, RAO Hao-kui, . Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(5): 1197-1206.
[11] SHI Dan-da, YU Kuai, MAO Yi-yao, YUAN Yuan, HAO Dong-xue, HU Wei, . Experimental study on the uplift behavior and soil deformation characteristics of the double-blade screw anchor in loose sand [J]. Rock and Soil Mechanics, 2022, 43(11): 3059-3072.
[12] JIN Ai-bing, WANG Jie, CHEN Shuai-jun, LI Hai, . Strength and damage characteristics of tailings filling body with different particle size distributions [J]. Rock and Soil Mechanics, 2022, 43(11): 3083-3093.
[13] XU Jian, WU Zhi-peng, CHEN Hui, . Triaxial shear behavior of basalt fiber reinforced loess under drying-wetting cycles [J]. Rock and Soil Mechanics, 2022, 43(1): 28-36.
[14] XIAO Fei, KONG Ling-wei, LIU Guan-shi, FENG Heng, DONG Yi-yi, ZENG Er-xian, . Uplift model test and capacity calculation method of metal grillage foundation in medium dense aeolian sand [J]. Rock and Soil Mechanics, 2022, 43(1): 65-75.
[15] LI Di-yuan, GAO Fei-hong, LIU Meng, MA Jin-yin. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads [J]. Rock and Soil Mechanics, 2021, 42(8): 2127-2140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .