Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (7): 1901-1915.doi: 10.16285/j.rsm.2023.0412

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on energy dissipation and damage failure law of gas-bearing coal under impact loading

WANG Lei1, ZHANG Shuai1, LIU Huai-qian1, 2, CHEN Li-peng1, ZHU Chuan-qi1, LI Shao-bo1, WANG An-cheng1   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2023-04-03 Accepted:2023-05-22 Online:2023-07-17 Published:2023-07-16
  • Supported by:
    This work was supported by the Collaborative Innovation Funding Project of Anhui Universities(GXXT-2020-055), Anhui Province Science and Technology Major Special Projects(202203a07020010), the National Key Research and Development Program(2020YFB1314203) and the Open Fund Project of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF10).

Abstract: In order to explore the difference in dynamic response of gas-bearing coal under impact loading, an observable gas-bearing coal split Hopkinson pressure bar (SHPB) test system was used to conduct uniaxial impact tests on coal bodies with different initial gas pressures. The energy dissipation law of the coal under different gas occurrence states was analyzed, and with the help of ultra-high-speed camera and digital image correlation (DIC) technology, the evolution characteristics of cracks on the surface of gas-bearing coal during the impact process were demonstrated. Combined with fractal theory, the influence of gas pressure on the fractal characteristics of crushed coal was obtained, and the intrinsic relationship between gas occurrence state and the characteristic size of crushed coal was revealed. The results show that under the impact loading, the stress-strain curve of the gas-bearing coal could be roughly divided into four stages based on the energy dissipation law. The deterioration effect of gas on the coal body was significant, and the crushing energy dissipation and crushing energy dissipation density function decreased exponentially with the increase of the initial gas pressure. Under the gas wedge effect, the evolution of the strain field of the gas-bearing coal subjected to the impact loading was more complicated, and the coal body damage gradually evolved from the transverse splitting failure to the composite transverse splitting-longitudinal splitting failure. Under the action of gas pressure, the internal damage of the coal body was intensified. After the failure, the average particle size and fragmented block size of the fragmented coal body gradually decreased with the increase in initial gas pressure. However, the fractal dimension increased exponentially, and the degree of coal body crushing was more intense. A multi-dimensional dynamic gas-bearing coal crushing model based on the conservation of energy consumption in the coal body crushing process was constructed, and combined with experimental data, the model was validated and it could better describe the characteristic dimensions of fragmented coal samples under the influence of gas. The research results have important theoretical significance and certain application prospects for the prevention and control of dynamic disasters in gas-bearing coal mines.

Key words: gas-bearing coal, impact loading, energy dissipation, digital image correlation (DIC), fractal characteristics, crushing model

CLC Number: 

  • TD712
[1] JIANG Ming-gui, SUN Wei, LI Jin-xin, FAN Kai, LIU Zeng, . Analysis of fracture characteristics and energy consumption of full tailings cemented backfill under impact load [J]. Rock and Soil Mechanics, 2023, 44(增刊): 186-196.
[2] CAO Rui-lang, WANG Yu-jie, XING Bo, ZHAO Yu-fei, SHEN Qiang . Experimental investigation on quantitative evaluation of rock hardness based on impact energy dissipation index [J]. Rock and Soil Mechanics, 2023, 44(9): 2619-2627.
[3] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[4] LI Chao, MO Pin-qiang, LI Shu-chen, . Large-deformation analysis of spherical cavity expansion problem using energy theory [J]. Rock and Soil Mechanics, 2023, 44(7): 2017-2027.
[5] WANG Lei, CHEN Li-peng, LIU Huai-qian, ZHU Chuan-qi, LI Shao-bo, FAN Hao, ZHANG Shuai, WANG An-cheng. Dynamic behaviors and deterioration characteristics of coal under different initial gas pressures [J]. Rock and Soil Mechanics, 2023, 44(1): 144-158.
[6] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[7] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[8] JIN Jie-fang, XU Hong, YU Xiong, LIAO Zhan-xiang. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone [J]. Rock and Soil Mechanics, 2022, 43(12): 3231-3240.
[9] JIN Ai-bing, WANG Jie, CHEN Shuai-jun, LI Hai, . Strength and damage characteristics of tailings filling body with different particle size distributions [J]. Rock and Soil Mechanics, 2022, 43(11): 3083-3093.
[10] QI Fei-fei, ZHANG Ke, XIE Jian-bin, . Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology [J]. Rock and Soil Mechanics, 2021, 42(6): 1669-1680.
[11] MA Qiu-feng, LIU Zhi-he, QIN Yue-ping, TIAN Jing, WANG Shu-li, . Rock plastic-damage constitutive model based on energy dissipation [J]. Rock and Soil Mechanics, 2021, 42(5): 1210-1220.
[12] WANG Ai-wen, GAO Qian-shu, PAN Yi-shan, . Experimental study of rock burst prevention mechanism of bursting liability reduction-deformation control-energy dissipation based on drillhole in coal seam [J]. Rock and Soil Mechanics, 2021, 42(5): 1230-1244.
[13] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
[14] WANG Dong-po, HE Qi-wei, LIU Yan-hui, WEN Ji-wei, LI wei, . Research on the energy dissipation mechanism of rockfall impacts on the improved rockfall attenuator barrier [J]. Rock and Soil Mechanics, 2021, 42(12): 3356-3365.
[15] LIU Xin-yu, ZHANG Xian-wei, YUE Hao-zhen, KONG Ling-wei, XU Chao, . SHPB tests on dynamic impact behavior of granite residual soil [J]. Rock and Soil Mechanics, 2020, 41(6): 2001-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .