Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (6): 1593-1603.doi: 10.16285/j.rsm.2022.1193

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Strength deterioration characteristics of lime-metakaolin improved earthen site soil under freeze-thaw cycles

LI Xin-ming1, 2, ZHANG Hao-yang1, 2, WU Di1, 2, GUO Yan-rui1, 2, REN Ke-bin3, TAN Yun-zhi4   

  1. 1. School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China; 2. Research Center of Environmental Geotechnical Engineering and Underground Engineering Disaster Control Engineering of Henan Province, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China; 3. Henan Provincial Architectural Heritage Protection and Research Institute, Zhengzhou, Henan 450007, China; 4. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2022-08-01 Accepted:2022-10-23 Online:2023-06-14 Published:2023-06-14
  • Supported by:
    This work was supported by the Henan Provincial College Young Backbone Teacher Project (2019GGJS142), the Basic Research Project of Henan Provincial Key Scientific Research Project (20ZX009), the National Natural Science Foundation of China (51509274) and the Scientific and Technological Project of Henan Province (202102310584, 222102320060)

Abstract: The Central Plains are located in an area that experiences seasonal freeze-thaw cycles, which can have significant effects on the soil structure of soil relics. To determine if lime-metakaolin (L-MK) is a feasible alternative to natural hydraulic lime (NHL) for earth site restoration work, tests were conducted using lime, metakaolin and silty sand from the site as main raw materials. Mass loss, unconfined compressive strength and splitting tensile strength tests were carried out on L-MK improved silty sand soil undergoing different numbers of freeze-thaw cycles to study its strength characteristics in depth. X-ray diffraction (XRD) thermogravimetry (TG), and scanning electron microscope (SEM) microscopic tests were also performed on some samples to reveal the internal mechanism of strength deterioration law of L-MK improved soil. Results indicate that L-MK improved soil has better freeze-thaw cycle resistance than NHL improved soil under the experimental mix ratio. Increasing the content of metakaolin improves the strength of L-MK improved soil. As the number of freeze-thaw cycles increases, the strain softening characteristics of L-MK improved soil show a weakening trend, and unconfined compressive strength and tensile strength decrease monotonically. After 30 freeze-thaw cycles, the unconfined compressive strength and splitting tensile strength of L-MK improved soil are about 3.79 and 1.16 times higher than that of NHL improved soil, respectively. The variation of strength is consistent with hydration products such as CSH and C4AH13 generated by hydration reaction under the influence of freeze-thaw cycle for L-MK and NHL improved soil.

Key words: earthen sites, freeze-thaw cycle, lime-metakaolin, hydraulic lime, microstructure

CLC Number: 

  • TU449
[1] GUO Qing-lin, LI Ping, ZHANG Bo, PEI Qiang-qiang, WANG Yang-wu, SHUI Bi-wen, SUN Man-li. Laboratory test of micro-nano Ca(OH)2 reinforced earthen sites [J]. Rock and Soil Mechanics, 2023, 44(8): 2221-2228.
[2] ZHANG Jun-ran, SONG Chen-yu, JIANG Tong, WANG Li-jin, ZHAO Jin-di, XIONG Tan-qing, . Hydromechanical characteristics and microstructure of unsaturated loess under high suction [J]. Rock and Soil Mechanics, 2023, 44(8): 2229-2237.
[3] ZHANG Jian-xin, MA Chang-hu, LANG Rui-qing, SUN Li-qiang, YANG Ai-wu, LI Di, . Experimental study on mechanical properties of coastal remolded soft soil subjected to the freeze-thaw cycle under confining pressure [J]. Rock and Soil Mechanics, 2023, 44(7): 1863-1874.
[4] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[5] HUANG Xian-wen, YAO Zhi-shu, CAI Hai-bing, LI Kai-qi, TANG Chu-xuan. Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling [J]. Rock and Soil Mechanics, 2023, 44(1): 193-205.
[6] WEI Li, CHAI Shou-xi, LIU Zhu, WANG Pei, LI Fang, . Evaluation on compressive strength of fiber reinforced soil under freeze-thaw cycles by scanning election microscopy and nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2022, 43(S2): 163-170.
[7] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[8] LI Jia-ping, ZHU Ke-chao, ZHOU Xuan, CHEN Yan-li, LI Yu-yang, MA Wen-bo, . Rheological properties of REY-rich deep-sea sediments [J]. Rock and Soil Mechanics, 2022, 43(S1): 348-356.
[9] LEI Hua-yang, ZHANG Wen-zhen, HUO Hai-feng, FENG Shuang-xi, LI Qi-ang, LIU Han-lei, . Correlation between frost heave and microscopic parameters of sand under water vapor recharge [J]. Rock and Soil Mechanics, 2022, 43(9): 2337-2346.
[10] ZHANG Jin-jin, LI Bo, YU Chuang, ZHANG Mao-yu, . Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil [J]. Rock and Soil Mechanics, 2022, 43(9): 2421-2430.
[11] QU Yong-long, YANG Geng-she, XI Jia-mi, HE Hui, DING Xiao, ZHANG Meng, . Deformation and failure characteristics of Cretaceous sandstone under low temperature and loading [J]. Rock and Soil Mechanics, 2022, 43(9): 2431-2442.
[12] LIU Cheng-yu, ZHENG Dao-zhe, ZHANG Xiang-xiang, CHEN Cheng-hai, CAO Yang-bing, . Influence of freeze-thaw temperature change rate on mechanics feature of rock during loading process [J]. Rock and Soil Mechanics, 2022, 43(8): 2071-2082.
[13] LIU Guan-shi, ZHAO Shou-dao, MOU Zhi, MO Yan-kun, ZHAO Qing-song, . Experimental study of the influence of structure on the shrinkage characteristics of expansive soil [J]. Rock and Soil Mechanics, 2022, 43(7): 1772-1780.
[14] ZHONG Wen, ZHU Wen-tao, ZENG Peng, HUANG Zhen, , WANG Xiao-jun, , GUO Zhong-qun, HU Kai-jian, . Experimental study of the influence of leaching mining on mechanical properties of ionic rare earth ore floor bedrock [J]. Rock and Soil Mechanics, 2022, 43(6): 1481-1492.
[15] ZHANG Qiang, WANG Jun-bao, SONG Zhan-ping, FENG Shi-jin, ZHANG Yu-wei, ZENG Tao, . Microstructure variation and empirical fatigue model of salt rock under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(4): 995-1008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .