›› 2016, Vol. 37 ›› Issue (8): 2411-2416.doi: 10.16285/j.rsm.2016.08.038

• Numerical Analysis • Previous Articles     Next Articles

Finite element analysis of penetration depth of geotubes based on coupled Eulerian-Lagrangian method

CHEN Jing1, YAN Shu-wang1, SUN Li-qiang1, CHEN Hao1, LANG Rui-qing1, REN Yu-xiao1, LIN Shu1, GE Juan2   

  1. 1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; 2. Tianjin Municipal Engineering Design & Research Institute, Tianjin, 300457, China
  • Received:2016-04-22 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Natural Science Foundation of China (41272323, 41402263) and the Natural Science Foundation of Tianjin (13JCZDJC35300).

Abstract: The displacement method of geotubes is widely applied to improving soft soil with a high water content and low bearing capacity in reclamation dam and road constructions due to its easy construction technology and significant treatment effect. When the weight of the geotubes is equal to the bearing capacity of foundation soil, the soil attains limiting equilibrium condition. It is necessary to estimate the relationship between the penetration depth and height of the geotubes. In this paper, model tests of three widths of geotubes are carried out, and the relationships between penetration depth and height, the displacement and upheavals of soil are revealed. In order to simulate the process of penetration of three geotubes, the Coupled Eulerian-Lagrangian approach(CEL) in ABAQUS software is used to simulates the process of penetration of geotubes. In this simulation, the geotube and silt are described as Lagrangian body and Eulerian body, respectively. The relationships of penetration depth with height of the geotube as well as displacement of the silt are obtained. The accuracy of the simulation approach is verified by model test results and theoretical result, showing that the coupled Eulerian-Lagrangian approach can be applied to predicting the penetration of geotubes very well.

Key words: displacement method of geotubes, theoretical result, model test, coupled Eulerian-Lagrangian approach

CLC Number: 

  • TU 447

[1] ZOU Wei-lie, FAN Ke-wei, ZHANG Pan, HAN Zhong, . Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors [J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544.
[2] LIU Xin, SHEN Yu-peng, LIU Zhi-jian, WANG Bing-lu, LIU Yue, HAN Yun-xi. Model test on the influence of groundwater seepage velocity on formation of frozen wall in subway cross passage [J]. Rock and Soil Mechanics, 2023, 44(9): 2667-2678.
[3] XIE Kang, SU Qian, CHEN Xiao-bin, LIU Bao, WANG Wu-bin, WANG Xun, DENG Zhi-xing, . Element model test on polyurethane crushed stone waterproof bonding layer of ballastless track [J]. Rock and Soil Mechanics, 2023, 44(8): 2308-2317.
[4] LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie. Lining- tratum interaction mechanism of mountain tunnel based on static pushover model test [J]. Rock and Soil Mechanics, 2023, 44(8): 2318-2326.
[5] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[6] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[7] MA Peng-jie, RUI Rui, CAO Xian-zhen, XIA Rong-ji, WANG Xi, DING Rui-heng, SUN Tian-jian, . Model tests of micropile-reinforced soil slope with long and gently inclined fissures [J]. Rock and Soil Mechanics, 2023, 44(6): 1695-1707.
[8] SONG Yang, WANG Hong-shuai, LI Ang, WANG Xin, XIAO Zuo-ming, YUAN Qiang, . Permeation-compaction diffusion mechanism of shield tail synchronous grouting slurry in water-rich fine sand layer [J]. Rock and Soil Mechanics, 2023, 44(5): 1319-1329.
[9] WANG Li, NAN Fang-yun, WANG Shi-mei, CHEN Yong, LI Xiao-wei, FAN Zhi-hong, CHEN Yu-shan, . Infiltration characteristics and deformation mechanism of rainfall-induced landslides in Three Gorges Reservoir Area based on 1D and 2D model tests [J]. Rock and Soil Mechanics, 2023, 44(5): 1363-1374.
[10] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
[11] LIU Xin-rong, GUO Xue-yan, XU Bin, ZHOU Xiao-han, ZENG Xi, XIE Ying-kun, WANG Yan, . Investigation on dynamic cumulative damage mechanism of the dangerous rock slope including deteriorated rock mass in hydro-fluctuation belt [J]. Rock and Soil Mechanics, 2023, 44(3): 637-648.
[12] WANG Rui-song, GUO Cheng-chao, LIN Pei-yuan, WANG Fu-ming, . Excavation response analysis of prefabricated recyclable support structure for water-rich silt foundation pit [J]. Rock and Soil Mechanics, 2023, 44(3): 843-853.
[13] PENG Wen-zhe, ZHAO Ming-hua, YANG Chao-wei, ZHAO Heng, . Model test and finite beam element solution of cyclic lateral characteristics of piles in sloping ground [J]. Rock and Soil Mechanics, 2023, 44(2): 381-391.
[14] ZHOU Xiang, CAI Jing-sen, MA Wei-cheng, XIAO Hao-wen, . Influence of material composition characteristics on the deformation and failure of gravel soil slopes [J]. Rock and Soil Mechanics, 2023, 44(2): 531-540.
[15] LIU Si-hong, SHEN Chao-min, CHENG De-hu, ZHANG Cheng-bin, MAO Hang-yu, . Model test of expansive soil slope with soilbags during rainfall-insolation cycles [J]. Rock and Soil Mechanics, 2022, 43(S2): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[2] LU Meng-meng,XIE Kang-he,WANG Yu-lin,CAI Xin. Analytical solution for nonlinear consolidation of stone column reinforced composite ground[J]. , 2010, 31(6): 1833 -1840 .
[3] SUN Jun,QI Yu-liang. Normal calculation-back analysis of surrounding rock stability of subsee tunnel[J]. , 2010, 31(8): 2353 -2360 .
[4] WEN Hai-jia, ZHANG Yong-xing, CHEN Yun. Slope risk assessment based on a 3D geo-information model[J]. , 2009, 30(S2): 367 -370 .
[5] PENG Lin-jun , ZHAO Xiao-dong , LI Shu-cai. Simulating research on rules of surface subsidence due to deep mining[J]. , 2011, 32(6): 1910 -1914 .
[6] YANG Zhi-quan1, 2, 3,HOU Ke-peng4,GUO Ting-ting4,MA Qiu5. Study of column-hemispherical penetration grouting mechanism based on Bingham fluid of time-dependent behavior of viscosity[J]. , 2011, 32(9): 2697 -2703 .
[7] LIU Yan-min,YU Hong-ming,WANG Can,WANG Chun-lei. Research on mechanism of damage of anhydrock in dolomite layer to tunnel structure[J]. , 2011, 32(9): 2704 -2709 .
[8] LENG Xian-lun ,SHENG Qian ,HE En-guang ,ZHU Ze-qi ,ZHAO Yu. Study of surrounding rock damage induced by tunnel boring machine driving tunnel at West Route of South to North Water Transfer Project[J]. , 2011, 32(11): 3420 -3431 .
[9] ZHANG Zhong-miao, XIE Zhi-zhuan、 ZHAO Yu-bo, LI Hui-ming. Uplift behaviors of bored piles subjected to high critical cyclic loading level[J]. , 2012, 33(2): 343 -348 .
[10] QIU Cheng-chun,ZHANG Meng-xi. Test research on dynamic elastic modulus of saturated sand reinforced with horizontal-vertical inclusions[J]. , 2012, 33(6): 1667 -1672 .