Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (9): 2537-2544.doi: 10.16285/j.rsm.2023.0488

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors

ZOU Wei-lie1, FAN Ke-wei2, ZHANG Pan1, HAN Zhong1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2023-04-20 Accepted:2023-06-18 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979206), the National Key Research and Development Project (2019YFC1509800), Jiangsu Province Excellent Postdoctoral Program (2023ZB830) and Hubei Provincial Natural Science Foundation (2021CFB389).

Abstract: Expansive soils, known for their considerable swelling pressure upon wetting, have been identified as potential instigators of instabilities in retaining walls. The incorporation of expanded polystyrene geofoam (EPS) inclusions between the retaining wall and the backfilled expansive soil has been found to considerably mitigate the lateral pressure on the wall, which results from the water absorption and expansion of the expansive soil. This substantial reduction is due to the impressive compressibility of the EPS inclusion. To explore the implications of the EPS inclusion on the lateral pressure distribution on retaining walls, and to analyze the factors influencing this pressure, a comprehensive model test and a corresponding lateral pressure theoretical analysis were performed. The results show that (1) the total lateral pressure acting on the retaining wall was reduced by about 50% by the EPS inclusion with a density of 12 kg/m3 when the expansive soil is saturated in the model test; (2) in the absence of the EPS inclusion, the lateral pressure distribution acting on the retaining wall escalated along its depth, whereas with the EPS inclusion, it remained largely uniform throughout the wall’s depth; and (3) the lateral pressure reduction due to the EPS inclusion was enhanced with increasing thickness and decreasing density of the EPS inclusion.

Key words: retaining wall, expansive soils, expanded polystyrene geofoam, model test, lateral pressure

CLC Number: 

  • TU473
[1] WANG Bin, LI Jie-tao, WANG Jia-jun, CHEN Peng-lin, . Model tests on accumulation landslides induced by extreme rainfall [J]. Rock and Soil Mechanics, 2023, 44(增刊): 234-248.
[2] YANG Kai-cheng, WU Shu-guang, LIAO Hai-cheng, ZHANG Hui, . Mechanism analysis and model test research on double anchor rods [J]. Rock and Soil Mechanics, 2023, 44(增刊): 495-503.
[3] YIN Ji-chao, BAI Xiao-yu, ZHANG Ya-mei, YAN Nan, WANG Yong-hong, ZHANG Ming-yi, . Development and application of a test device for simulating pile driving and static load in undisturbed mudstone [J]. Rock and Soil Mechanics, 2023, 44(增刊): 698-710.
[4] LIU Xin, SHEN Yu-peng, LIU Zhi-jian, WANG Bing-lu, LIU Yue, HAN Yun-xi. Model test on the influence of groundwater seepage velocity on formation of frozen wall in subway cross passage [J]. Rock and Soil Mechanics, 2023, 44(9): 2667-2678.
[5] XIE Kang, SU Qian, CHEN Xiao-bin, LIU Bao, WANG Wu-bin, WANG Xun, DENG Zhi-xing, . Element model test on polyurethane crushed stone waterproof bonding layer of ballastless track [J]. Rock and Soil Mechanics, 2023, 44(8): 2308-2317.
[6] LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie. Lining- stratum interaction mechanism of mountain tunnel based on static pushover model test [J]. Rock and Soil Mechanics, 2023, 44(8): 2318-2326.
[7] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[8] ZHANG Chang-guang, GUAN Gang-hui, LI Hai-xiang, FAN Jia-shen, SHI Jing, . Seismic active earth pressure on a retaining wall in unsaturated soils with cracks for changing water table [J]. Rock and Soil Mechanics, 2023, 44(6): 1575-1584.
[9] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[10] MA Peng-jie, RUI Rui, CAO Xian-zhen, XIA Rong-ji, WANG Xi, DING Rui-heng, SUN Tian-jian, . Model tests of micropile-reinforced soil slope with long and gently inclined fissures [J]. Rock and Soil Mechanics, 2023, 44(6): 1695-1707.
[11] SONG Yang, WANG Hong-shuai, LI Ang, WANG Xin, XIAO Zuo-ming, YUAN Qiang, . Permeation-compaction diffusion mechanism of shield tail synchronous grouting slurry in water-rich fine sand layer [J]. Rock and Soil Mechanics, 2023, 44(5): 1319-1329.
[12] WANG Li, NAN Fang-yun, WANG Shi-mei, CHEN Yong, LI Xiao-wei, FAN Zhi-hong, CHEN Yu-shan, . Infiltration characteristics and deformation mechanism of rainfall-induced landslides in Three Gorges Reservoir Area based on 1D and 2D model tests [J]. Rock and Soil Mechanics, 2023, 44(5): 1363-1374.
[13] WANG Jia-quan, ZHONG Wen-tao, HUANG Shi-bin, TANG Yi, . Experimental study on static and dynamic performances of modular reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2023, 44(5): 1435-1444.
[14] WANG Li-yan, JI Wen-wei, TAO Yun-xiang, TANG Yue, WANG Bing-hui, CAI Xiao-guang, ZHANG Lei, . Experimental study on seismic performances of geogrid striped-reinforced waste tire-faced retaining walls [J]. Rock and Soil Mechanics, 2023, 44(4): 931-940.
[15] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .