›› 2016, Vol. 37 ›› Issue (10): 2839-2844.doi: 10.16285/j.rsm.2016.10.014

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Moisture migration of unsaturated soil due to thermal gradients

LI Yan-long1, WANG Jun1, WANG Tie-hang2   

  1. 1. School of Civil Engineering, Xuchang College, Xuchang, Henan 461000, China; 2. School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an, Shaanxi 710055, China
  • Received:2014-11-25 Online:2016-10-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51278397).

Abstract: In order to obtain the law of moisture migration in unsaturated soil due to thermal gradient effect, experiments of vaporous water migration and moisture migration are carried out under different thermal gradients. Experimental results show that the temperature fields in all soil samples have been achieved steady within 24 h and changed linearly along the length direction of the soil samples. Migration quantities of vaporous water and liquid water both increase with the increase of temperature gradient, however the former is significantly greater than the latter. Temperature effect in vaporous water migration experiments increases significantly with the increase of initial water content of soil sample. By contrast, temperature effect in liquid water migration experiments has little relation with initial water content of soil sample. Finally, a function of water content gradient, which contains temperature gradient and initial water content, is developed.

Key words: unsaturated soil, thermal gradient, moisture migration, temperature effect

CLC Number: 

  • TU 411

[1] ZENG Zhao-tian, CUI Zhe-qi, SUN De-an, YAO Zhi, PAN Bin, . Temperature effect on water retention capacity of Nanning expansive soil and its microscopic mechanism [J]. Rock and Soil Mechanics, 2023, 44(8): 2177-2185.
[2] ZHANG Chang-guang, GUAN Gang-hui, LI Hai-xiang, FAN Jia-shen, SHI Jing, . Seismic active earth pressure on a retaining wall in unsaturated soils with cracks for changing water table [J]. Rock and Soil Mechanics, 2023, 44(6): 1575-1584.
[3] ZHAO Yu-xin, LI Xu, LIN Sen, WANG Xiao-meng, . An improved shear strength model of unsaturated soils over a wide suction range [J]. Rock and Soil Mechanics, 2023, 44(4): 990-1000.
[4] ZHAO Yu-xin, LI Xu, ZHAO Hong-fen, , LIU Yan. Evolution model of unsaturated shear strength indices over a wide range of saturation [J]. Rock and Soil Mechanics, 2023, 44(10): 2809-2820.
[5] SHU Jin-hui, MA Qiang, CHANG Li-jun, . Isolation effect of S-wave by composite multilayer wave impeding block in unsaturated soil [J]. Rock and Soil Mechanics, 2023, 44(1): 217-231.
[6] CHEN Yong, SU Jian, CAO Ling, WANG li, WANG Shi-mei, . Evolution law of the soil-water characteristic curve based on data mining method [J]. Rock and Soil Mechanics, 2022, 43(S2): 23-34.
[7] QIN Ai-fang, MENG Hong-ping, JIANG Liang-hua. Analysis of axisymmetric consolidation characteristics of unsaturated soils under surcharge loading and electro-osmosis [J]. Rock and Soil Mechanics, 2022, 43(S1): 97-106.
[8] ZENG Li-feng, SHAO Long-tan, GUO Xiao-xia, . Origin and development of the concept of effective stress for soils [J]. Rock and Soil Mechanics, 2022, 43(S1): 127-144.
[9] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
[10] ZHAI Zhang-hui, ZHANG Ya-guo, LI Tong-lu, XIAO Shu-xiong, . Solution for cylindrical cavity expansion in unsaturated soils considering boundary effect [J]. Rock and Soil Mechanics, 2022, 43(S1): 301-311.
[11] WANG Zhi-chao, LUO Lei, TIAN Ying-hui, ZHANG Chun-hui, . Experimental study on time-dependent characteristics of rate-sensitivity and creep of unsaturated compacted soil [J]. Rock and Soil Mechanics, 2022, 43(7): 1816-1824.
[12] WANG Hai-man, NI Wan-kui, LIU Kui, . Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess [J]. Rock and Soil Mechanics, 2022, 43(7): 1845-1853.
[13] GAO You, LI Ze, SUN De-an, YU Hai-hao, CHEN Bo, . Unimodal and bimodal soil-water characteristic curves model considering the effect of initial void ratio [J]. Rock and Soil Mechanics, 2022, 43(6): 1441-1452.
[14] ZHANG Wen-gang, GU Xin, LIU Han-long, ZHANG Qing, WANG Lin, WANG Lu-qi, . Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating [J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122.
[15] SHU Jin-hui , MA Qiang, ZHOU Feng-xi, LI Qiang, . Propagation characteristics of P1 wave passing through wave impeding block in unsaturated soil [J]. Rock and Soil Mechanics, 2022, 43(4): 1135-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .