›› 2016, Vol. 37 ›› Issue (10): 2893-2899.doi: 10.16285/j.rsm.2016.10.021

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile

HUANG Yong1, WANG Jun2, MEI Guo-xiong1, 3   

  1. 1. College of Transportation Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009, China; 2. College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, Zhejiang 325027, China; 3. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China
  • Received:2016-05-31 Online:2016-10-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51322807).

Abstract: This paper aims to investigate the promotion-efficiency and law of the dissipation process of excess pore water pressure by using permeable pipe pile based on indoor model test. The contrast tests between the permeable pipe pile and normal pipe pile indicate that the permeable pipe pile is beneficial to evidently promote the dissipation of excess pore water pressure. The promoting effect increases along the depth direction and decreases along the horizontal direction. Permeable pipe pile has the most obvious effect in the early period of the dissipation of excess pore water pressure, greatly speeding up the construction progress. Through changing the initial drainage time of the permeable pipe pile and observing the variation of the excess pore pressure dissipation in the soil around the pile, it is found that the peak value of excess pore pressure is evidently reduced in the soil around the pile when the initial drainage time is set at the finished moment of pile driving. This study shows that the permeable pipe pile can improve the construction schedule and reduce the influence on the surrounding environment in the process of pile driving,

Key words: permeable pipe pile, excess pore water pressure, initial drainage time, model test

CLC Number: 

  • TU 473.1

[1] ZOU Wei-lie, FAN Ke-wei, ZHANG Pan, HAN Zhong, . Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors [J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544.
[2] DENG Yue-bao, ZHANG Chen-hao, WANG Xin, ZHANG Ri-hong. Consolidation theory of implantable drainage pile [J]. Rock and Soil Mechanics, 2023, 44(9): 2639-2647.
[3] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[4] LIU Xin, SHEN Yu-peng, LIU Zhi-jian, WANG Bing-lu, LIU Yue, HAN Yun-xi. Model test on the influence of groundwater seepage velocity on formation of frozen wall in subway cross passage [J]. Rock and Soil Mechanics, 2023, 44(9): 2667-2678.
[5] XIE Kang, SU Qian, CHEN Xiao-bin, LIU Bao, WANG Wu-bin, WANG Xun, DENG Zhi-xing, . Element model test on polyurethane crushed stone waterproof bonding layer of ballastless track [J]. Rock and Soil Mechanics, 2023, 44(8): 2308-2317.
[6] LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie. Lining- tratum interaction mechanism of mountain tunnel based on static pushover model test [J]. Rock and Soil Mechanics, 2023, 44(8): 2318-2326.
[7] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[8] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[9] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[10] MA Peng-jie, RUI Rui, CAO Xian-zhen, XIA Rong-ji, WANG Xi, DING Rui-heng, SUN Tian-jian, . Model tests of micropile-reinforced soil slope with long and gently inclined fissures [J]. Rock and Soil Mechanics, 2023, 44(6): 1695-1707.
[11] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[12] SONG Yang, WANG Hong-shuai, LI Ang, WANG Xin, XIAO Zuo-ming, YUAN Qiang, . Permeation-compaction diffusion mechanism of shield tail synchronous grouting slurry in water-rich fine sand layer [J]. Rock and Soil Mechanics, 2023, 44(5): 1319-1329.
[13] WANG Li, NAN Fang-yun, WANG Shi-mei, CHEN Yong, LI Xiao-wei, FAN Zhi-hong, CHEN Yu-shan, . Infiltration characteristics and deformation mechanism of rainfall-induced landslides in Three Gorges Reservoir Area based on 1D and 2D model tests [J]. Rock and Soil Mechanics, 2023, 44(5): 1363-1374.
[14] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
[15] LIU Xin-rong, GUO Xue-yan, XU Bin, ZHOU Xiao-han, ZENG Xi, XIE Ying-kun, WANG Yan, . Investigation on dynamic cumulative damage mechanism of the dangerous rock slope including deteriorated rock mass in hydro-fluctuation belt [J]. Rock and Soil Mechanics, 2023, 44(3): 637-648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .