›› 2016, Vol. 37 ›› Issue (10): 2945-2952.doi: 10.16285/j.rsm.2016.10.028

• Geotechnical Engineering • Previous Articles     Next Articles

A method for calculating the safety rock thickness of pile bearing strata with considering deadweight of karst cave roof

BAI Hua-jun   

  1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China
  • Received:2014-12-31 Online:2016-10-11 Published:2018-06-09

Abstract: The existing formulae of roof bearing layer thickness for punch damage and shear damage are modified by reasonably simplifying the model for bearing layer of karst cave roof. A formula of roof bearing layer thickness under tensile and bending damage conditions is proposed with considering the deadweight of roof. With clear physical significance, the proposed formula can well address the effects of the effective width and the deadweight in one-way slab and two-way slab models, and it is straightforward to be applied. Based on the observed results in practice, the range of parameter variation is determined for various failure modes such as punching, and it is concluded that the net thickness of roof bearing layer is more than 2.5d-3.5d for punching and shearing (where d is pile diameter), while the total thickness is more than 5.0d-5.5d for bending, so that the design thickness can meet the design requirements. The results can provide reference for design and construction of bridge piles in karst area.

Key words: karst, failure mechanism, pile foundation, safe thickness, bending failure, punch failure

CLC Number: 

  • TU 473

[1] CHEN Hui-yun, FENG Zhong-ju, BAI Shao-fen, DONG Jian-song, XIA Cheng-ming, CAI Jie, . Experimental study on load transfer mechanism of bridge pile foundation passing through karst cave [J]. Rock and Soil Mechanics, 2023, 44(5): 1405-1415.
[2] HUANG Juan, HU Zhong-wei, YU Jun, LI Dong-kai. Analytical solution to lateral dynamic impedance of piles in viscous liquefied soil [J]. Rock and Soil Mechanics, 2023, 44(5): 1445-1456.
[3] ZHANG Cong, FENG Zhong-ju, WANG Fu-chun, KONG Yuan-yuan, WANG Xi-qing, MA Xiao-qian, . Shaking table test of dynamic response of a single pile under different thicknesses of soft soil layers in a strong earthquake area [J]. Rock and Soil Mechanics, 2023, 44(4): 1100-1110.
[4] ZHANG Xin, DONG Hao, XU Ying-ying, WANG Liu-yue, . Experimental study on the bearing capacity of piles in sand under cyclic loading [J]. Rock and Soil Mechanics, 2023, 44(3): 673-684.
[5] ZHENG Chang-jie, CUI Yi-qin, WU Chen, LUO Tong, LUAN Lu-bao, . Simplified analytical solution for horizontal seismic response of single piles to vertically incident S waves [J]. Rock and Soil Mechanics, 2023, 44(2): 327-336.
[6] PENG Wen-zhe, ZHAO Ming-hua, YANG Chao-wei, ZHAO Heng, . Model test and finite beam element solution of cyclic lateral characteristics of piles in sloping ground [J]. Rock and Soil Mechanics, 2023, 44(2): 381-391.
[7] TANG Liang, MAN Xiao-feng, CONG Sheng-yi, SI Pan, LING Xian-zhang, ZHANG Xiao-yu, LI Xue-wei, , . Failure mechanism of pile foundations in liquefiable soils under seismic loading: status and challenge [J]. Rock and Soil Mechanics, 2023, 44(10): 2979-2996.
[8] ZHONG Zi-lan, HAN Chun-tang, LI Jin-qiang, ZHAO Xin, MIAO Hui-quan. Ultimate bearing capacity of sand under lateral horizontal movement of shallowly buried pipelines [J]. Rock and Soil Mechanics, 2022, 43(S2): 95-103.
[9] TAN Fei, LIN Da-wei, JIAO Yu-yong, YU Jin. Experimental study on isolation layer of steel casing coating pile [J]. Rock and Soil Mechanics, 2022, 43(S1): 229-236.
[10] YANG Xiao-feng, LU Zu-de, CHEN Cong-xin, SUN Chao-yi, LIU Xuan-ting, . Analysis of mechanical model of sliding-bending failure in bedding rock slopes with slab-rent structure [J]. Rock and Soil Mechanics, 2022, 43(S1): 258-266.
[11] JIGN Li-ping, WU Fan, LI Jia-rui, WANG Gang, QI Wen-hao, ZHOU Zhong-yi, . Experimental study of seismic response of soil-pile foundation-isolation support-nuclear island [J]. Rock and Soil Mechanics, 2022, 43(9): 2483-2492.
[12] CHAI Yuan, NIU Yong, LÜ Hai-bo, . Experimental study on vertical bearing characteristics of a single pile in cemented calcareous sand layers [J]. Rock and Soil Mechanics, 2022, 43(8): 2203-2212.
[13] CHENG Jian-long, ZOU Qing-you, YANG Sheng-qi, LI Xiao-zhao, LIANG Quan, QU Lei, MEI Yan, . Simulation of indentation behavior of TBM disc cutter and failure mechanism of hard rock assisted by hydraulic precutting kerfs [J]. Rock and Soil Mechanics, 2022, 43(8): 2317-2326.
[14] ZHANG Jian, QI Rui-yu, ZONG Jing-yao, FENG Tu-gen. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability [J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844.
[15] FAN Hao-bo, ZHOU Ding-kun, LIU Yong, SONG Yu-xiang, ZHU Zheng-guo, ZHU Yong-quan, GAO Xin-qiang, GUO Jia-qi, . Mechanical response characteristics of lining structure of pipeline karst tunnels in water-rich areas [J]. Rock and Soil Mechanics, 2022, 43(7): 1884-1898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIE Xing-hua, WANG Guo-qing. A study of anti-seepage wall depth in thick overburden dam base[J]. , 2009, 30(9): 2708 -2712 .
[2] SONG Jing,WANG Qing,SUN Tie,LI Xiao-ru,ZHANG Zhong-qiong,JIAO Zhi-liang. Laboratory research on variation mechanism of pore water pressure during stage of dead-weight sludging drainage of dredger fill[J]. , 2010, 31(9): 2935 -2940 .
[3] CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, QIN Bing, WEI Xue-wen. Research on meso-structures and their evolution laws of expansive soil and loess[J]. , 2009, 30(1): 1 -11 .
[4] XIA Li-nong, LEI Ming, NIE Chong-jun. Field test of influences of load at pile top on negative skin friction behaviors[J]. , 2009, 30(3): 664 -668 .
[5] PAN Peng-zhi, FENG Xia-ting, ZHOU Hui. Failure evolution processes of brittle rocks using 3D cellular automaton method[J]. , 2009, 30(5): 1471 -1476 .
[6] YE Wei-min, HUANG Wei, CHEN Bao, YU Chen1, WANG Ju. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. , 2009, 30(7): 1899 -1903 .
[7] WANG Ji-liang, CHEN Jian-ping, YANG Jing, QUE Jin-sheng. Method of distance discriminant analysis for determination of classification of rockburst[J]. , 2009, 30(7): 2203 -2208 .
[8] CHEN Ming,LU Wen-bo,ZHOU Chuang-bing,LUO Yi. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation[J]. , 2009, 30(8): 2254 -2258 .
[9] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[10] CHEN Jian-gong ,ZHOU Tao-tao ,ZHANG Yong-xing. Shock failure mechanism of zonal disintegration within surrounding rock in deep chamber[J]. , 2011, 32(9): 2629 -2634 .