Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2483-2492.doi: 10.16285/j.rsm.2021.1888

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of seismic response of soil-pile foundation-isolation support-nuclear island

JIGN Li-ping1, 2, WU Fan1, LI Jia-rui 1, WANG Gang1, QI Wen-hao1, ZHOU Zhong-yi1   

  1. 1. Institute of Engineering Mechanics, China Earthquake Administration, Harbin, Heilongjiang 150080, China; 2. Institute of Disaster Prevention Science and Technology, Sanhe, Hebei 065201, China
  • Received:2021-11-08 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by Fundamental Research Funds of Institute of Engineering Mechanics, China Earthquake Administration (2017B10, 2019B10) and the National Science and Technology Major Special Projects(2018ZX06902016).

Abstract: The seismic responses of soil-pile-isolation pedestal-nuclear island structure and soil-pile-nuclear island structure were studied by large-scale simulated shaking table test. In the test, rubber lead-zinc bearing was used as foundation isolation and placed between pile foundation cap and upper nuclear island structure. The foundation soil was uniform silty clay from an engineering site. The ground motion time history was fitted by RG1.60 response spectrum designed by Nuclear Power Corporation of the United States. The test results show that the isolation bearings can not only change the frequency of the superstructure, reduce the acceleration and the magnitude of the response spectrum, but also dwindle the bending moment of the lower pile, which can reduce the reaction isolation of the superstructure. However, the use of isolation bearings will change the bending moment distribution of pile foundation, thus special seismic design should be made for pile foundation stress and deformation in nuclear power engineering to ensure the seismic stability of the whole soil-pile-superstructure system

Key words: nuclear power, pile foundation, vibration isolation technology, structural dynamic response

CLC Number: 

  • TU473
[1] TAN Fei, LIN Da-wei, JIAO Yu-yong, YU Jin. Experimental study on isolation layer of steel casing coating pile [J]. Rock and Soil Mechanics, 2022, 43(S1): 229-236.
[2] CHAI Yuan, NIU Yong, LÜ Hai-bo, . Experimental study on vertical bearing characteristics of a single pile in cemented calcareous sand layers [J]. Rock and Soil Mechanics, 2022, 43(8): 2203-2212.
[3] FENG Zhong-ju, MENG Ying-ying, ZHANG Cong, LAI De-jin, ZHU Ji-xin, LIN Lu-yu, . Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1289-1298.
[4] DENG Tao, XU Jie, ZHENG Jia-yong, ZHENG Lu. Modified cantilever pile method for anti-sliding pile in deep soft soil [J]. Rock and Soil Mechanics, 2022, 43(5): 1299-1305.
[5] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[6] YANG Jun, SUN Xiao-li, BIAN De-cun, SHAO Ji-xi, . Experimental study on detecting pile defects by parallel seismic method [J]. Rock and Soil Mechanics, 2021, 42(3): 874-881.
[7] LI Hong-xing, FENG Shi-jin, HE Shao-hua, ZHANG Xiao-lei, SUN Da-ming, . Study on mechanical characteristics of a new PHC short pile foundation for solar power generation in sandy soil [J]. Rock and Soil Mechanics, 2021, 42(12): 3217-3226.
[8] HUANG Chao-xuan, YUAN Wen-xi, HU Guo-jie, . An estimation method of horizontal bearing capacity of piles after pre-consolidation treatment for layered soft foundation [J]. Rock and Soil Mechanics, 2021, 42(1): 113-124.
[9] LIU Chun-lin, TANG Meng-xiong, HU He-song, YUE Yun-peng, HOU Zhen-kun, CHEN Hang, . An experimental study of vertical bearing capacity of DPC piles considering sediment effect at pile bottom [J]. Rock and Soil Mechanics, 2021, 42(1): 177-185.
[10] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[11] JIANG Wan-li, ZHU Guo-fu, ZHANG Jie, . A direct high-strain method for the bearing capacity of single piles [J]. Rock and Soil Mechanics, 2020, 41(10): 3500-3508.
[12] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[13] FANG Jin-cheng, KONG Gang-qiang, CHEN Bin, CHE Ping, PENG Huai-feng, LÜ Zhi-xiang, . Field test on thermo-mechanical properties of pile group influenced by concrete hydration [J]. Rock and Soil Mechanics, 2019, 40(8): 2997-3003.
[14] ZHU Ming-xing, DAI Guo-liang, GONG Wei-ming, WAN Zhi-hui, LU Hong-qian, . Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607.
[15] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .