Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1289-1298.doi: 10.16285/j.rsm.2021.1447

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake

FENG Zhong-ju1, MENG Ying-ying1, ZHANG Cong1, LAI De-jin2, ZHU Ji-xin2, LIN Lu-yu2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Xiamen Road and Bridge Engineering Investment Development Co., Ltd., Xiamen, Fujian 361026, China
  • Received:2021-08-27 Revised:2022-01-13 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708040) and the Hainan Provincial Transportation Science and Technology Project (HNZXY2015-045R).

Abstract: To investigate the dynamic response characteristics of pile groups in liquefaction sites under strong earthquakes as well as the laws between soil resistance and pile-soil relative displacement (p-y), a shaking table model test associated with the project of Haiwen Bridge was conducted. The dynamic responses of sand pore pressure ratio, pile bending moment and p-y curve under different embedded depths of saturated silty sand encountered by 0.15g-0.35g seismic action were studied. The results show that when the seismic intensity reaches 0.25g, the pore pressure ratio of saturated silty sand under different embedded depths is larger than 0.8 and the liquefaction phenomenon occurs. As the embedded depth increases, the increased time of the pore pressure ratio is obviously delayed. At different embedded depths, the maximum bending moment of the pile appears at the interface between liquefied soil layer and the non-liquefied soil layer. At the same embedded depth, the area surrounded by the p-y curve increases gradually with seismic intensity, and its overall slope decreases, indicating that the dynamic energy dissipation of pile-soil interaction increases gradually and that the stiffness of soil around the pile decreases gradually. As the embedded depth increases, the area enclosed by the p-y curve gradually decreases and its overall slope gradually increases, indicating that the dynamic energy dissipation of pile-soil interaction gradually decreases and the soil stiffness around the pile gradually increases. Therefore, when performing the seismic design of bridge pile groups at liquefied sites, the relationship between liquefied soil layer and pile foundation should be considered comprehensively to ensure the bending bearing capacity of the pile foundations at the boundary between liquefied and non-liquefied soil layers.

Key words: bridge pile foundation, strong earthquake action, shaking table test, liquefaction site, dynamic response, p-y curve

CLC Number: 

  • TU 473
[1] ZHENG Chang-jie, HE Yu-ze, DING Xuan-ming, LUAN Lu-bao, CHEN Ye-wei, . Vertical vibration response of rigid strip footings on a viscoelastic soil layer overlying bedrock [J]. Rock and Soil Mechanics, 2022, 43(6): 1434-1440.
[2] AN Jun-hai, TAO Lian-jin, JIANG Lu-zhen, . A shaking table-based experimental study on seismic response of a shield- enlarge-dig type subway station structure [J]. Rock and Soil Mechanics, 2022, 43(5): 1277-1288.
[3] GUO Ming-zhu, GU Kun-sheng, ZHANG He, SUN Hai-long, WANG Chen, LIU Huang, . Experimental study of dynamic response law of bedding rock slope with weak interlayer under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1306-1316.
[4] ZHANG Cong, FENG Zhong-ju, MENG Ying-ying, GUAN Yun-hui, CHEN Hui-yun, WANG Zhen, . Shaking table test on the difference of dynamic time-history response between single pile and pile group foundation [J]. Rock and Soil Mechanics, 2022, 43(5): 1326-1334.
[5] ZHOU Ze-hua, LÜ Yan, SU Sheng-rui, DIAO Yu-heng, WANG Zuo-peng, WANG Jian-kun, ZHAO Hui, . Seismic response and failure characteristics of granite slope using large-scale shaking table test [J]. Rock and Soil Mechanics, 2022, 43(4): 918-931.
[6] ZHAO Shuang, YU Jun, LIU Xin-yuan, HU Zhong-wei. Analytical study on dynamic response of cantilever underground rigid wall [J]. Rock and Soil Mechanics, 2022, 43(1): 152-159.
[7] ZHANG Zhi-guo, SHEN An-xin, ZHANG Cheng-ping, PAN Y. T., WU Zhong-ten, . Analytical solution to initial intrusion static equilibrium of steel catenary riser in touchdown zone on seabed based on nonlinear Pasternak foundation model [J]. Rock and Soil Mechanics, 2021, 42(9): 2355-2374.
[8] HE Jiang, XIAO Shi-guo, . Calculation method for seismic permanent displacement of assembled multi-step cantilever retaining walls [J]. Rock and Soil Mechanics, 2021, 42(7): 1971-1982.
[9] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[10] NIU Ting-ting, SUN Guang-chao, . Dynamic response analysis of X-pile-net composite embankment in high-speed railway [J]. Rock and Soil Mechanics, 2021, 42(5): 1266-1280.
[11] LI Yi-cheng, FENG Shi-jin, . Dynamic response of a track coupled with a transversely isotropic ground due to train axle loads [J]. Rock and Soil Mechanics, 2021, 42(5): 1313-1324.
[12] LAI Tian-wen, LEI Hao, WU Zhi-xin, WU Hong-gang, . Shaking table test study on basalt fiber reinforced plastics in high slope protection [J]. Rock and Soil Mechanics, 2021, 42(2): 390-400.
[13] FENG Zhong-ju, ZHANG Cong, HE Jing-bin, DONG Yun-xiu, YUAN Feng-bin, . Shaking table test of time-history response of rock-socketed single pile under strong earthquake [J]. Rock and Soil Mechanics, 2021, 42(12): 3227-3237.
[14] DOU Jin-xi, ZHANG Gui-jin, ZHANG Xi, FAN Wei-zhong, SONG Wei, . Dynamic response analysis of slurry-soil coupling in sandy soil based on pulsating grouting [J]. Rock and Soil Mechanics, 2021, 42(12): 3315-3327.
[15] ZHANG Ling, OU Qiang, ZHAO Ming-hua, DING Xuan-ming, LIU Jian-fei, . Numerical analysis on dynamic response characteristics of geosynthetic reinforced embankment under moving load [J]. Rock and Soil Mechanics, 2021, 42(10): 2865-2874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .