Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (6): 1434-1440.doi: 10.16285/j.rsm.2021.1512

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Vertical vibration response of rigid strip footings on a viscoelastic soil layer overlying bedrock

ZHENG Chang-jie1, 2, HE Yu-ze1, 2, DING Xuan-ming3, LUAN Lu-bao4, CHEN Ye-wei5   

  1. 1. School of Civil Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China; 2. Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, China; 4. College of Engineering, Ocean University of China, Qingdao, Shandong 266100, China; 5. Construction & Development Co., Ltd. of China Construction Fourth Bureau, Xiamen, Fujian 361000, China
  • Received:2021-09-06 Revised:2022-03-02 Online:2022-06-21 Published:2022-06-29
  • Supported by:
    This work was supported by the Open Fund of Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education (LNTCCMA-20220108) and the National Natural Science Foundation of China (52178318, 52008059).

Abstract: Considering the influence of soil thickness, the vertical vibration response of rigid strip footings on viscoelastic soil is theoretically investigated. Based on the assumptions for footing and foundation with rigid bedrock boundary condition, employing the method of Fourier transform, this mixed-boundary value problem is expressed as a pair of dual integral equations, which are transformed to a set of linear equations by means of Jacobi orthogonal polynomials and solved numerically. The solution in this study is compared with the solution of elastic half-space in the literature to verify its rationality. The results demonstrate that the attenuation of ground waves generated by the vibration of the footing, as well as the variation in dynamic compliance coefficient of the foundation, is sensitive to the thickness of the foundation soil layer. The numerical results suggest that considering the foundation soil as infinite half-space, as in existing solutions, is reasonable only in cases where the thickness of the top soil layer exceeds approximately fifty times the width of the footing.

Key words: strip footing, dynamic response, vertical vibration, soil-structure interaction

CLC Number: 

  • TU470
[1] FENG Zhong-ju, MENG Ying-ying, ZHANG Cong, LAI De-jin, ZHU Ji-xin, LIN Lu-yu, . Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1289-1298.
[2] GUO Ming-zhu, GU Kun-sheng, ZHANG He, SUN Hai-long, WANG Chen, LIU Huang, . Experimental study of dynamic response law of bedding rock slope with weak interlayer under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1306-1316.
[3] ZHOU Ze-hua, LÜ Yan, SU Sheng-rui, DIAO Yu-heng, WANG Zuo-peng, WANG Jian-kun, ZHAO Hui, . Seismic response and failure characteristics of granite slope using large-scale shaking table test [J]. Rock and Soil Mechanics, 2022, 43(4): 918-931.
[4] XU Kun-peng, JING Li-ping, CHENG Xin-jun, LIANG Hai-an, BIN Jia, . Feasibility study of pushover test of underground structure based on boundary displacement method [J]. Rock and Soil Mechanics, 2022, 43(1): 127-138.
[5] ZHAO Shuang, YU Jun, LIU Xin-yuan, HU Zhong-wei. Analytical study on dynamic response of cantilever underground rigid wall [J]. Rock and Soil Mechanics, 2022, 43(1): 152-159.
[6] LU Yi-wei, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie, . Simplified analytical solution for vertical vibration of X-section pile in homogeneous viscoelastic soil [J]. Rock and Soil Mechanics, 2021, 42(9): 2472-2479.
[7] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[8] NIU Ting-ting, SUN Guang-chao, . Dynamic response analysis of X-pile-net composite embankment in high-speed railway [J]. Rock and Soil Mechanics, 2021, 42(5): 1266-1280.
[9] LI Yi-cheng, FENG Shi-jin, . Dynamic response of a track coupled with a transversely isotropic ground due to train axle loads [J]. Rock and Soil Mechanics, 2021, 42(5): 1313-1324.
[10] DOU Jin-xi, ZHANG Gui-jin, ZHANG Xi, FAN Wei-zhong, SONG Wei, . Dynamic response analysis of slurry-soil coupling in sandy soil based on pulsating grouting [J]. Rock and Soil Mechanics, 2021, 42(12): 3315-3327.
[11] ZHANG Ling, OU Qiang, ZHAO Ming-hua, DING Xuan-ming, LIU Jian-fei, . Numerical analysis on dynamic response characteristics of geosynthetic reinforced embankment under moving load [J]. Rock and Soil Mechanics, 2021, 42(10): 2865-2874.
[12] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[13] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[14] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[15] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .