Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (9): 2472-2479.doi: 10.16285/j.rsm.2020.1825

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Simplified analytical solution for vertical vibration of X-section pile in homogeneous viscoelastic soil

LU Yi-wei1, DING Xuan-ming2, LIU Han-long2, ZHENG Chang-jie3   

  1. 1. Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China; 2. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. College of Civil Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
  • Received:2020-12-04 Revised:2021-04-25 Online:2021-09-10 Published:2021-08-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52008032, 51878103) and the Fundamental Research Funds for Central Public Welfare Research Institutes(CKSF2021459/YT).

Abstract: X-section cast-in-place concrete pile (X-section pile) is a kind of new special-shaped pile. Considering the distribution of dynamic friction resistance on concave arc section, convex arc section and soil-pile coupled vibration, treating the soil as axisymmetric homogeneous viscoelastic medium, the analytical solution in frequency domain is obtained by using Laplace transformation technique and coordinate transformation. The solution is compared with that of solid circular pile to verify the rationality. Moreover, by analyzing the effect of pile length, open arc spacing and open arc angle on complex dynamic stiffness and velocity admittance, the influence of dimension parameters on the vertical vibration characteristics of X-section pile is investigated. It shows that the complex dynamic stiffness at the top of pile increases, the oscillation amplitudes and resonant frequencies of the velocity admittance curves significantly decrease with the increase of pile length. The open arc spacing and open arc angle have little influence on the velocity admittance at low frequencies. At high frequencies, the velocity admittance decreases with the increase of open arc spacing and increases with the increase of open arc angle. However, oscillation amplitudes of the velocity admittance curves increase with the increase of open arc spacing and decrease with the increase of open arc angle.

Key words: X-section pile, vertical vibration, viscoelastic soil, analytical solution, complex dynamic stiffness

CLC Number: 

  • TU470
[1] WANG Zu-xian, SHI Cheng-hua, LIU Jian-wen. Analytical solution of additional response of shield tunnel under asymmetric jack thrust [J]. Rock and Soil Mechanics, 2021, 42(9): 2449-2460.
[2] QIU Chao, LI Chuan-xun, LI Hong-jun, . Analytical solutions for one-dimensional nonlinear large-strain consolidation of high compressible soil under a ramp loading [J]. Rock and Soil Mechanics, 2021, 42(8): 2195-2206.
[3] LIN Wei-an, JIANG Wen-hao, ZHAN Liang-tong. General analytical solution for consolidation of sand-drained foundation considering the vacuum loading process and the time-dependent surcharge loading [J]. Rock and Soil Mechanics, 2021, 42(7): 1828-1838.
[4] QIN Ai-fang, JIANG Liang-hua, XU Wei-fang, MEI Guo-xiong, . Analytical solution to consolidation of unsaturated soil by vertical drains with continuous permeable boundary [J]. Rock and Soil Mechanics, 2021, 42(5): 1345-1354.
[5] LING Dao-sheng, ZHAO Tian-hao, NIU Jia-jun, ZHU Song, SHAN Zhen-dong, . Analytical solutions for 1D consolidation of unsaturated soils with mixed nonhomogeneous boundary conditions [J]. Rock and Soil Mechanics, 2021, 42(4): 883-891.
[6] ZHOU Feng-xi, ZHOU Zhi-xiong, LIU Hong-bo, . Analogous relationship between the solutions of non-homogeneous foundation and homogeneous foundation: elastic wave velocity [J]. Rock and Soil Mechanics, 2021, 42(4): 892-898.
[7] LIU Jian, QIAO Lan, LI Qing-wen, LI Yuan, ZHAO Guo-yan, . Analytical study of fracture parameters for a centrally cracked Brazilian disc subjected to distributed diametral pressures [J]. Rock and Soil Mechanics, 2021, 42(11): 2987-2996.
[8] CHEN Yu, LI Chuan-xun, FENG Cui-xia, . Analytical solution for one-dimensional consolidation of soft soils under a partially permeable boundary condition and a time-dependent loading considering the threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2021, 42(11): 3008-3016.
[9] LIU Chang, ZHANG Ding-li, ZHANG Su-lei, FANG Qian, FANG Huang-cheng, . Analytical solution of the long-term service performance of tunnel considering surrounding rock rheology and lining deterioration characteristics [J]. Rock and Soil Mechanics, 2021, 42(10): 2795-2807.
[10] ZHU Sai-nan, LI Wei-hua, LEE Vincent W, ZHAO Cheng-gang, . Analytical solution of seismic response of an undersea cavity under incident P1-wave [J]. Rock and Soil Mechanics, 2021, 42(1): 93-103.
[11] HUANG Chao-xuan, YUAN Wen-xi, HU Guo-jie, . An estimation method of horizontal bearing capacity of piles after pre-consolidation treatment for layered soft foundation [J]. Rock and Soil Mechanics, 2021, 42(1): 113-124.
[12] FENG Qing-gao, CAI Bing-hua, FENG Xiao-la, YUAN Xiang, . Analytical solutions of transient flow model for a partially penetrating well in a finite leaky confined aquifer system [J]. Rock and Soil Mechanics, 2021, 42(1): 168-176.
[13] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[14] HU An-feng, ZHOU Yu-shan, CHEN Yuan, XIA Chang-qing, XIE Kang-he, . Semi-analytical solutions for one-dimensional nonlinear large strain consolidation of structured soft clay [J]. Rock and Soil Mechanics, 2020, 41(8): 2583-2591.
[15] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .