Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (1): 127-138.doi: 10.16285/j.rsm.2021.0711

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Feasibility study of pushover test of underground structure based on boundary displacement method

XU Kun-peng1, JING Li-ping1, 2, CHENG Xin-jun3, LIANG Hai-an3, BIN Jia4   

  1. 1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, Heilongjiang 150080, China; 2. Institute of Disaster Prevention, Langfang, Hebei 065201, China; 3. School of Civil and Architectural Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China; 4. College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412000, China
  • Received:2021-05-11 Revised:2021-09-08 Online:2022-01-10 Published:2022-01-06
  • Supported by:
    This work was supported by the Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (2017B10), the National Key Research and Development Program (2016YFC0800205) and the National Natural Science Foundation for Young Scientists of China (52008081).

Abstract: The deformation of underground structure during earthquake is mainly controlled by the deformation of surrounding soil. Based on this idea, a simplified seismic analytical method, namely the boundary displacement method, was proposed for underground structure by applying soil deformation to the lateral boundary of soil-structure finite element model, while there is a lack of relevant experimental research. To explore the feasibility of the test method of applying pushover displacement to soil lateral boundary, a large-scale pushover test of soil-underground structure system was carried out taking the self-developed geotechnical comprehensive test model box as the test platform and the 1:10 scale Dakai station section tunnel as the research object. Response characteristics of underground structure and surrounding soil in the process of test were revealed based on the analyses of the strain, displacement, and stress. The results show that due to the strong nonlinear characteristics of soil materials, the inverted triangle deformation applied on the side of soil will attenuate in the transmission process, and the underground structure is subject to the coupling effect of shear deformation and extrusion deformation. The junction between central column and bottom plate is the seismic weak region in the whole structure. Horizontal coefficient of subgrade reaction is related to the level of soil displacement and the failure stage of structural side wall. The integral stiffness of structure is greater than that of the equivalent soil, and the ratio of lateral deformation between structure and soil is less than 1, which gradually increased with the increase of the pushing level. The soil-structure interaction could be quantified through deformation characteristic, which effectively fills the gap in the experimental study of soil structure interaction coefficient. The test method and conclusions have important guiding significance for seismic analysis of underground structure and feasibility study of pushover test.

Key words: underground structure, seismic performance, pushover test, boundary displacement method, soil-structure interaction

CLC Number: 

  • TU 92
[1] ZHAO Shuang, YU Jun, LIU Xin-yuan, HU Zhong-wei. Analytical study on dynamic response of cantilever underground rigid wall [J]. Rock and Soil Mechanics, 2022, 43(1): 152-159.
[2] HAN Run-bo, XU Cheng-shun, DU Xiu-li, XU Zi-gang, . Optimization of model box type in quasi-static pushover test of soil-underground structure system [J]. Rock and Soil Mechanics, 2021, 42(2): 462-470.
[3] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[4] YU Hai-tao, ZHANG Zheng-wei, LI Pan, . Improved equivalent response acceleration method for seismic design of underground structures [J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410.
[5] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[6] LUO Guan-yong, MA Ming-jun, CAO Hong, PAN Hong, . A new anti-float method for riverside underground structures: drainage corridor combined with uplift piles or uplift anchors [J]. Rock and Soil Mechanics, 2020, 41(11): 3730-3739.
[7] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[8] XU Zi-gang, DU Xiu-li, XU Cheng-shun, HAN Run-bo, QIAO Lei. Research on generalized response displacement method for seismic analysis of underground structures with complex sections [J]. Rock and Soil Mechanics, 2019, 40(8): 3247-3254.
[9] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[10] XU Zi-gang, DU Xiu-li, XU Cheng-shun, ZHANG Chi-yu, JIANG Jia-wei. Comparison of determination methods of site Rayleigh damping coefficients in seismic responses analysis of underground structures [J]. Rock and Soil Mechanics, 2019, 40(12): 4838-4847.
[11] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[12] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
[13] SONG Lin-hui, WANG Yu-hao, FU Lei, MEI Guo-xiong,. Test and analysis on buoyancy of underground structure in soft clay [J]. , 2018, 39(2): 753-758.
[14] LI Zhi-yuan, LI Jian-bo, LIN Gao, . Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM [J]. , 2018, 39(11): 4242-4250.
[15] LI Xiao-jun, WANG Xiao-hui, LI Liang, HAN Jie,. Design and performance test of 3D laminar shear container for shaking table [J]. , 2017, 38(5): 1524-1532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .