›› 2017, Vol. 38 ›› Issue (5): 1524-1532.doi: 10.16285/j.rsm.2017.05.037

• Testing Technology • Previous Articles     Next Articles

Design and performance test of 3D laminar shear container for shaking table

LI Xiao-jun1, 2, WANG Xiao-hui1, LI Liang1, HAN Jie1   

  1. 1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 2. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
  • Received:2016-08-13 Online:2017-05-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51408255, 51421005), the National Science and Technology Major Project (2013ZX06002001).

Abstract: Shaking table test is considered as an effective tool for investigation of soil-structure interaction problems and validation of research methods under earthquake loading. It is essential to choose an appropriate soil container, because the soil container directly affects the boundary of the model and the accuracy of the simulation. A 3D circular laminar shear container is deployed consisting of 19 layers of aluminum alloy frames with dimensions of 1 800 mm in height and 4 500 mm in diameter. The upper and lower layer frames are connected by supports in three direction. In order to investigate the boundary effect of the laminar shear container on the seismic response, a shaking table test is conducted to acquire the test data from accelerometers embedded in the sand bed at various depths and distances from the edge of the container. In the shaking table test, the ground acceleration corresponding to design spectra of AP1000 nuclear power plant is applied as the input for earthquake ground motion. The acceleration time-histories compare with response spectra at different monitoring points. The relative error of PGAs and response spectra recorded at monitoring points from center to the edge of the container are calculated. It is shown that the designed 3D laminar shear container could effectively simulate the infinite boundary condition of actual site in three directions, which overcomes the shortcoming of the former laminar shear container inputting one-direction or two-direction excitation.

Key words: boundary effect, laminar shear model container, shaking table test, soil-structure interaction, 3D earthquake ground motion

CLC Number: 

  • TU 411

[1] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[2] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[3] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[4] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[5] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[6] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[7] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[8] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[9] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[10] LI Ping, ZHANG Yu-dong, BO Tao, GU Jun-ru, ZHU Sheng. Study of ground motion effect of trapezoidal valley site based on centrifuge shaking table test [J]. Rock and Soil Mechanics, 2020, 41(4): 1270-1278.
[11] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[12] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[13] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[14] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[15] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!