›› 2018, Vol. 39 ›› Issue (7): 2327-2335.doi: 10.16285/j.rsm.2016.2288

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influence of oblique incidence of stress wave on rock joint ends

FEI Hong-lu, BAO Shi-jie, YANG Zhi-guang   

  1. Institute of Engineering Blasting, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Received:2016-09-28 Online:2018-07-10 Published:2018-08-05

Abstract: When rock joints are disturbed by stress waves, the continuous stresses in joint ends change with various degrees of joints. To analyze the relationship between the dynamic change and the incident angle of stress wave, we introduce a combined model of the nonlinear normal normalised constitutive relation and the linear tangential constitutive relation of rock and the corresponding stress wave propagation equation of oblique incident joints in P wave oblique incidence joint. According to the theory of mode-I and mode-II crack-tip stress in fracture mechanics and the displacement field, a formula is obtained for calculating the stress field and displacement field with the change of the velocity of the joint in the combined form. This study investigates the effect of the simulated pulse signal with different incident angles on the simulation of stress and displacement at the end. Stress and displacement fields at the upper and lower ends of the joint present non-symmetric distribution under the oblique incidence of stress wave. With the increase and decrease of vibration velocity of the incident wave particle point, the position of the stress concentration changes. The data of 0.005 m position at the upper and lower sides of the joint end in the model are calculated, the change of joint normal stiffness bringing by the particle velocity of incident wave directly influences the transmission and reflection of stress wave, which leads to the lag of stress and displacement at the end of the joint. The lateral displacement and the incident angle do not change monotonically, but the vertical displacement decreases with the increase of incidence angle.

Key words: nonlinear rock joint, BB model, stress, lag effect

CLC Number: 

  • TU 452

[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] LUO Bin-yu, YE Yi-cheng, HU Nan-yan, LI Peng-cheng, CHEN Chang-zhao, . Mohr’s circle analysis and numerical simulation of stress state of pillar under combined compression-shear loading [J]. Rock and Soil Mechanics, 2020, 41(S1): 63-73.
[3] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
[4] XU Yan, ZHOU Xiao-min, HE Xiao-nan, WU Tao, ZHANG Jian-ling, LI Sen. Thermal-solid coupling analysis of shaft wall and surrounding rocks in a mine shaft [J]. Rock and Soil Mechanics, 2020, 41(S1): 217-226.
[5] LIU Quan-sheng, WANG Dong, ZHU Yuan-guang, YANG Zhan-biao, BO Yin. Application of support vector regression algorithm in inversion of geostress field [J]. Rock and Soil Mechanics, 2020, 41(S1): 319-328.
[6] LI Li-hua, YU Xiao-ting, XIAO Heng-lin, MA Qiang, LIU Yi-ming, YANG Xing, . Mechanical properties of reinforcement about rice husk ash mixed soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2168-2178.
[7] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[8] CHEN Hao, HU Xiao-rong. Triple-shear failure criteria and experimental verification for unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(7): 2380-2388.
[9] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[10] LIU Zheng-hong, ZHANG Long, ZHENG Jian-guo, ZHANG Wei, YU Yong-tang, . Testing device and experimental study on anti-seepage ability of sliding micrometer tube [J]. Rock and Soil Mechanics, 2020, 41(7): 2504-2515.
[11] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[12] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[13] WANG Kang-yu, ZHUANG Yan, GENG Xue-yu, . Experimental study on critical dynamic stress of coarse-grained soil in railway subgrade [J]. Rock and Soil Mechanics, 2020, 41(6): 1865-1873.
[14] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[15] XU Ri-qing, JIANG Jia-qi, FENG Su-yang, JU Lu-ying, . A rotational plastic potential model and non-associated plastic flow rule [J]. Rock and Soil Mechanics, 2020, 41(5): 1474-1482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!