Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (7): 2168-2178.doi: 10.16285/j.rsm.2019.0219

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical properties of reinforcement about rice husk ash mixed soil

LI Li-hua1, 2, YU Xiao-ting1, 2, XIAO Heng-lin1, 2, MA Qiang1, 2, LIU Yi-ming1, 2, YANG Xing1, 2   

  1. 1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. Ecological Road Engineering Research Center, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2019-01-28 Revised:2019-08-21 Online:2020-07-10 Published:2020-09-10
  • Contact: 肖衡林,男,1977年生,博士,教授,主要从事环境岩土方面的研究。E-mail: xiao-henglin@163.com E-mail:lilihua466@163.com
  • Supported by:
    This work was supported by the National Natural Science Foundation Project (51678224, 51778217), the Outstanding Youth Fund Project in Hubei Province(2018CFA063) and the Provincial Central Committee Guides Local Science and Technology (2019ZYYD053, 2018ZYYD005).

Abstract: The rice husk ash, which is environmental friendly waste-recycling, can strengthen the soil. Triaxial tests were conducted to study the stress-strain properties, strength characteristics, and variation characteristics at different strain levels including the elastic modulus, deviator stress and reinforcement strength ratio of rice husk ash mixed clay with different proportions of rice husk ash and its reinforced soil. The test results show that the maximum dry density of the mixed soil reduces significantly and the optimum moisture obviously increases with the increase of rice husk ash content. The content of rice hush ash has a great influence on the shear strength of the reinforced soil, and rice husk ash-soil mixture’ s initial tangent modulus and peak stress that addition of 10%?15% rice husk ash is recommended as the maximum. Compared with geotextile reinforced rice-husk-ash mixed soil, higher deviatoric stress and shear strength are observed on specimens with geogrid, and this trend is more obvious with the increase of the number of reinforcement layers. It also shows that the inflection point of the stress-strain curve is more prominent with the increase of the number of reinforcement layers. The elastic modulus of the mixture material depends on the content of rice husk ash, the type and layers of reinforcement. After adding the rice husk ash, the elastic modulus of the soil increases significantly, and it increases 1.5 times in better content when reinforced by geogrid, both rice husk ash and the reinforcement can effectively strengthen the soils. As the number of reinforced layer increases, the reinforcement strength of rice husk ash-soil mixture increases significantly but has little relation with the confining pressure.

Key words: rice husk ash, triaxial test, reinforced soil, stress-strain, strength

CLC Number: 

  • TU 43
[1] YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, CHEN Zi-he, . Three-dimensional mechanical properties of light solidified saline soil [J]. Rock and Soil Mechanics, 2021, 42(3): 593-600.
[2] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[3] WU Jun, ZHENG Xi-yao, YANG Ai-wu, LI Yan-bo. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock and Soil Mechanics, 2021, 42(3): 647-655.
[4] LIU Hai-feng, ZHENG Kun, ZHU Chang-qi, MENG Qing-shan, WU Wen-juan. Brittleness evaluation of coral reef limestone base on stress-strain curve [J]. Rock and Soil Mechanics, 2021, 42(3): 673-680.
[5] REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an, LIU Xiao-yi. Mobilized strength of sliding zone soils with gravels in reactivated landslides [J]. Rock and Soil Mechanics, 2021, 42(3): 863-873.
[6] LÜ Ya-ru, WANG Chong, HUANG Hou-xu, ZUO Dian-jun, . Study on particle structure and crushing behaviors of coral sand [J]. Rock and Soil Mechanics, 2021, 42(2): 352-360.
[7] SUN Zhuang-zhuang, MA Gang, ZHOU Wei, WANG Yi-han, CHEN Yuan, XIAO Hai-bin. Influence of particle shape on size effect of crushing strength of rockfill particles [J]. Rock and Soil Mechanics, 2021, 42(2): 430-438.
[8] AN Ning, YAN Chang-gen, WANG Ya-chong, LAN Heng-xing, BAO Han, XU Jiang-bo, SHI Yu-ling, SUN Wei-feng, . Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess [J]. Rock and Soil Mechanics, 2021, 42(2): 501-510.
[9] LU Feng, QIU Wen-ge, . A multiparameter non-proportional shear strength reduction method for slope stability analysis based on energy evolution theory [J]. Rock and Soil Mechanics, 2021, 42(2): 547-557.
[10] FENG Da-kuo, ZHANG Jian-min, . Effect of normal stress on cyclic simple-shear behavior of gravel-structure interface [J]. Rock and Soil Mechanics, 2021, 42(1): 18-26.
[11] ZHAN Liang-tong, SUN Qian-qian, GUO Xiao-gang, CHEN Rui, CHEN Yun-min, . Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling [J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
[12] LI Hai-chao, MA Bo, ZHANG Sheng, . A fractional sub-loading surface model for rockfill [J]. Rock and Soil Mechanics, 2021, 42(1): 68-76.
[13] WANG Dong-xing, CHEN Zheng-guang, . Mechanical properties and micro-mechanisms of magnesium oxychloride cement solidified sludge [J]. Rock and Soil Mechanics, 2021, 42(1): 77-85.
[14] ZHANG Ze, MA Wei, ROMAN Lidia, MELNIKOV Andrey, YANG Xi, LI Hong-bi, . Freeze-thaw cycles-physical time analogy theory based method for predicting long-term shear strength of frozen soil [J]. Rock and Soil Mechanics, 2021, 42(1): 86-92.
[15] TAN Yun-zhi, ZHAN Shao-hu, HU Yan, CAO Ling, DENG Yong-feng, MING Hua-jun, SHEN Ke-jun, . Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin [J]. Rock and Soil Mechanics, 2021, 42(1): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[5] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[6] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[7] ZHANG Jian-guo, ZHANG Qiang-yong, YANG Wen-dong, ZHANG Xin. Regression analysis of initial geostress field in dam zone of Dagangshan hydropower station[J]. , 2009, 30(10): 3071 -3078 .
[8] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[9] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[10] JIANG Xiao-wei, WAN Li, WANG Xu-sheng, WU Xiong, CHENG Hui-hong. Estimation of depth-dependent hydraulic conductivity and deformation modulus using RQD[J]. , 2009, 30(10): 3163 -3167 .