Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (1): 104-112.doi: 10.16285/j.rsm.2020.0442

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin

TAN Yun-zhi1, ZHAN Shao-hu1, HU Yan1, CAO Ling1, DENG Yong-feng2, MING Hua-jun1, SHEN Ke-jun3   

  1. 1. Yichang Key Laboratory of the Resources Utilization for Problematic Soils, China Three Gorges University, Yichang, Hubei 443002, China; 2. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 3. Yichang Hongqian Environmental Building Materials Co. Ltd., Yichang, Hubei 443100, China
  • Received:2020-04-15 Revised:2020-10-26 Online:2021-01-11 Published:2021-01-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51579137) and the Youth Innovation Team Project of Hubei Province (T201803).

Abstract: Laterite is prone to form as aggregate due to its high clay content, leading to a difficultly in uniformly mixing itwith lime. Meanwhile, is the weak acid property of laterite promotes the interaction between the lime and laterite, which shows a significant influence on the final treatment effects. In this paper, the causes of the weak acidity of laterite are firstly studied through the charges distribution characteristics of water molecules and clay minerals. Then, the interaction between lime and laterite is simulated through soaking the lime-treated laterite in the acid and alkaline solution respectively. Based on the results, the method to inhibit the lime-laterite interaction by metakaolin is proposed. Laterite with two groups size, mixed with different dose of metakaolin and lime are adopted to conduct the unconfined compressive strength tests. The results show that compared with the laterite treated with lime alone, neither excessive nor insufficient metakaolin has contribution to its strength improvement, and the best treatment effect can be obtained with the dose of 5.0% metakaolin, which verifies the feasibility of metakaolin to inhibit the lime-laterite interaction . Reactions between metakaolin and limecan form not only the silicon and aluminate cementation bonded by ionic bond but also the reticular cementation bonded by covalent bond. Since the latter has a significant ability toresist erosion by acid, the internal reason of lime-laterite interaction undermined by metakaolin is interpreted.

Key words: metakaolin, lime, aggregate size, laterite, strength

CLC Number: 

  • TU 411
[1] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[2] SUN Zeng-chun, GUO Hao-tian, LIU Han-long, WU Huan-ran, XIAO Yang, . A thermo-elasto-plastic constitutive model for saturated clay based on disturbed state concept [J]. Rock and Soil Mechanics, 2021, 42(5): 1325-1334.
[3] PING Qi, SU Hai-peng, MA Dong-dong, ZHANG Hao, ZHANG Chuan-liang, . Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments [J]. Rock and Soil Mechanics, 2021, 42(4): 932-942.
[4] YU Li, PENG Hai-wang, LI Guo-wei, ZHANG Yu, HAN Zi-hao, ZHU Han-zheng. Experimental study on granite under high temperature-water cooling cycle [J]. Rock and Soil Mechanics, 2021, 42(4): 1025-1035.
[5] WANG Jia-hui, RAO Xi-bao, JIANG Ji-wei, YAO Jin-song, XIONG Shi-hu, LU Yi-wei, LI Hao-min, . Model experimental study of the shear mechanism of vibroflotation stone column composite foundation [J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103.
[6] YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, CHEN Zi-he, . Three-dimensional mechanical properties of light solidified saline soil [J]. Rock and Soil Mechanics, 2021, 42(3): 593-600.
[7] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[8] WU Jun, ZHENG Xi-yao, YANG Ai-wu, LI Yan-bo. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock and Soil Mechanics, 2021, 42(3): 647-655.
[9] LIU Hai-feng, ZHENG Kun, ZHU Chang-qi, MENG Qing-shan, WU Wen-juan. Brittleness evaluation of coral reef limestone base on stress-strain curve [J]. Rock and Soil Mechanics, 2021, 42(3): 673-680.
[10] REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an, LIU Xiao-yi. Mobilized strength of sliding zone soils with gravels in reactivated landslides [J]. Rock and Soil Mechanics, 2021, 42(3): 863-873.
[11] LÜ Ya-ru, WANG Chong, HUANG Hou-xu, ZUO Dian-jun, . Study on particle structure and crushing behaviors of coral sand [J]. Rock and Soil Mechanics, 2021, 42(2): 352-360.
[12] TAN Yun-zhi, ZHAN Shao-hu, SHEN Ke-jun, ZUO Qing-jun, MING Hua-jun, . Effects of hardening and intergranular cementation on the surface of treated aggregate laterite [J]. Rock and Soil Mechanics, 2021, 42(2): 361-368.
[13] SUN Zhuang-zhuang, MA Gang, ZHOU Wei, WANG Yi-han, CHEN Yuan, XIAO Hai-bin. Influence of particle shape on size effect of crushing strength of rockfill particles [J]. Rock and Soil Mechanics, 2021, 42(2): 430-438.
[14] LU Feng, QIU Wen-ge, . A multiparameter non-proportional shear strength reduction method for slope stability analysis based on energy evolution theory [J]. Rock and Soil Mechanics, 2021, 42(2): 547-557.
[15] FENG Da-kuo, ZHANG Jian-min, . Effect of normal stress on cyclic simple-shear behavior of gravel-structure interface [J]. Rock and Soil Mechanics, 2021, 42(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[4] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[5] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[6] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[7] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[8] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[9] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[10] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .