Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (1): 68-76.doi: 10.16285/j.rsm.2020.0610

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A fractional sub-loading surface model for rockfill

LI Hai-chao1, MA Bo1, ZHANG Sheng1, 2   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. National Engineering Laboratory for High Speed Railway Construction, Changsha, Hunan 410075, China
  • Received:2020-05-13 Revised:2020-09-30 Online:2021-01-11 Published:2021-01-05
  • Supported by:
    This work was supported by the National Science Fund for Distinguished Young Scholars (51722812), the High Level Talents Gathering Project in Hunan Province (2018RS3016), the Postgraduate Scientific Innovation Project of Central South University (1053320170586) and the Postgraduate Scientific Research Innovation Project of Hunan Province (CX20200126).

Abstract: The mechanical behaviors of rockfills exhibit strain-softening and dilative features, which is also influenced by the pressure, loading paths and density. In this paper, a new fractional sub-loading surface model for rockfills is proposed based on the critical state mechanism, which is a typical double yield surfaces model. In the p-q plane, the current and reference stress points are located on the sub-loading surface and the reference yield surface, respectively. The relative position between the sub-loading surface and reference yield surface is controlled by the void ratio difference ?. Compared with the state parameter ?, ? is able to account for the effect of loading paths additionally. The proposed model is able to account for the extent between the plastic flow direction and the loading direction without introducing a plastic potential function. A fractional plastic flow rule is developed by applying the Caputo fractional stress operator on the yield function, which provides a unified description for the associated and non-associated plastic flow rules. The formula of the proposed model is quite simple and the included seven model parameters can be determined through laboratory tests conveniently. The model predictions were compared with the drained triaxial test results of Tacheng rockfill under the conditions of various initial void ratios and confining pressures. A good agreement between the model predictions and experimental results is obtained, which indicates that the proposed model is capable of describing the stress-strain curves and deformation features of Tacheng rockfill. In addition, the effect of initial void ratios on the critical state line in the e-lnp plane is also captured by the proposed model.

Key words: rockfill, fractional order flow rule, strength, state parameter, constitutive equations

CLC Number: 

  • TU 411
[1] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[2] SUN Zeng-chun, GUO Hao-tian, LIU Han-long, WU Huan-ran, XIAO Yang, . A thermo-elasto-plastic constitutive model for saturated clay based on disturbed state concept [J]. Rock and Soil Mechanics, 2021, 42(5): 1325-1334.
[3] ZHU Sheng, ZHANG Yuan, JIALIBIEKE Ahalibieke, YU Jian-qing, HE Zhao-sheng, . Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis [J]. Rock and Soil Mechanics, 2021, 42(5): 1453-1461.
[4] PING Qi, SU Hai-peng, MA Dong-dong, ZHANG Hao, ZHANG Chuan-liang, . Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments [J]. Rock and Soil Mechanics, 2021, 42(4): 932-942.
[5] YU Li, PENG Hai-wang, LI Guo-wei, ZHANG Yu, HAN Zi-hao, ZHU Han-zheng. Experimental study on granite under high temperature-water cooling cycle [J]. Rock and Soil Mechanics, 2021, 42(4): 1025-1035.
[6] WANG Jia-hui, RAO Xi-bao, JIANG Ji-wei, YAO Jin-song, XIONG Shi-hu, LU Yi-wei, LI Hao-min, . Model experimental study of the shear mechanism of vibroflotation stone column composite foundation [J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103.
[7] YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, CHEN Zi-he, . Three-dimensional mechanical properties of light solidified saline soil [J]. Rock and Soil Mechanics, 2021, 42(3): 593-600.
[8] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[9] WU Jun, ZHENG Xi-yao, YANG Ai-wu, LI Yan-bo. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock and Soil Mechanics, 2021, 42(3): 647-655.
[10] REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an, LIU Xiao-yi. Mobilized strength of sliding zone soils with gravels in reactivated landslides [J]. Rock and Soil Mechanics, 2021, 42(3): 863-873.
[11] LÜ Ya-ru, WANG Chong, HUANG Hou-xu, ZUO Dian-jun, . Study on particle structure and crushing behaviors of coral sand [J]. Rock and Soil Mechanics, 2021, 42(2): 352-360.
[12] SUN Zhuang-zhuang, MA Gang, ZHOU Wei, WANG Yi-han, CHEN Yuan, XIAO Hai-bin. Influence of particle shape on size effect of crushing strength of rockfill particles [J]. Rock and Soil Mechanics, 2021, 42(2): 430-438.
[13] LU Feng, QIU Wen-ge, . A multiparameter non-proportional shear strength reduction method for slope stability analysis based on energy evolution theory [J]. Rock and Soil Mechanics, 2021, 42(2): 547-557.
[14] FENG Da-kuo, ZHANG Jian-min, . Effect of normal stress on cyclic simple-shear behavior of gravel-structure interface [J]. Rock and Soil Mechanics, 2021, 42(1): 18-26.
[15] ZHAN Liang-tong, SUN Qian-qian, GUO Xiao-gang, CHEN Rui, CHEN Yun-min, . Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling [J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[5] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[6] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[7] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[8] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[9] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[10] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .