›› 2016, Vol. 37 ›› Issue (S2): 301-308.doi: 10.16285/j.rsm.2016.S2.037

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Microstructure of loess reinforced by compositely modified sodium silicate

WU Zhu-min1, 2, LÜ Qing-feng2, WANG Sheng-xin3   

  1. 1. Shanghai Xieli Geotechnical Engineering Investigation Co., Ltd., Shanghai 200060, China; 2. Key Laboratory of Mechanics on Western Disaster and Environment Mechanics of Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China; 3. Geological Hazards Research and Prevention Institute, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2016-06-18 Online:2016-11-11 Published:2018-06-09
  • Supported by:
    This work was supported by Gansu Province Science and Technology Support Program (1011FKCA093).

Abstract: Silicification is one of the chemical methods of collapsible loess treatments. Sodium silicate is modified by potassium silicate for better reinforced effect. The mercury intrusion porosimetry (MIP), scanning electron microscope and energy dispersive spectrometer tests (SEM-EDS) are performed on the loess specimens reinforced by compound modified sodium silicate. The microscopic characteristics, such as the entrance pore size distributions, particles' morphology and chemical composition, are carried out. Meanwhile, the relationship between microstructure, chemical composition and macroscopic mechanical behavior is also discussed. Based on the results of MIP, similar entrance pore size distributions, the dual-porosity structure, were found in both modified and unmodified reinforced loess specimens. And the entrance pore size distribution ranges from 0.06 to 8 ?m. According to the decreasing size, the pores can be labeled as large, medium, small and micro-pore, among which the three critical values are 8, 2 and 0.06 ?m, respectively. Moreover, gel-filled effect can be observed if reinforced effect is not significant. The results of SEM-EDS tests show that loess specimens retain granular, trellis pores, contact-cement microstructure after modification. The surface of loess particles became rough and floc was adsorbed after adding potassium silicate material. The EDS data represents that the K element content increases with the increasing of incorporation of potassium silicate. And the unconfined strength of specimens is positively correlated with the percentage of K element. It is also shown that connection strength of soil particles and the structure morphology are the main factors of the macroscopic mechanical properties of loess. The mechanism of loess reinforcement by compound modified sodium silicate is reinforcement of the bond strength of cement in microstructure and formation of three-dimensional networks of frame.

Key words: loess, sodium silicate, potassium silicate, mercury intrusion porosimetry, SEM-EDS test, cementation

CLC Number: 

  • TU 444
[1] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
[2] CHU Feng, ZHANG Hong-gang, SHAO Sheng-jun, DENG Guo-hua, . Experimental study on mechanical deformation and corrosion resistance characteristics of loess reinforced with synthetic waste cloth fiber yarn [J]. Rock and Soil Mechanics, 2020, 41(S1): 394-403.
[3] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[4] WEN Xin, HU Zhi-ping, ZHANG Xun, CHAI Shao-bo, LÜ Xin-bo, . Modified infiltration model for saturated-unsaturated loess based on Green-Ampt model and its parametric study [J]. Rock and Soil Mechanics, 2020, 41(6): 1991-2000.
[5] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[6] NIU Geng, SHAO Long-tan, SUN De-an, WEI Chang-fu, GUO Xiao-xia, XU Hua. Evolution law of pore-size distribution in soil-water retention test [J]. Rock and Soil Mechanics, 2020, 41(4): 1195-1202.
[7] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
[8] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[9] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[10] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[11] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[12] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[13] LIU Hua, ZHANG Shuo-cheng, NIU Fu-jun, SHAO Zhu-shan, NIU Ze-lin, LU Jie, . Experimental study on one-dimensional compression characteristics of Q3 loess contaminated by acid or alkali solutions [J]. Rock and Soil Mechanics, 2019, 40(S1): 210-216.
[14] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[15] YIN Li-yang, TANG Chao-sheng, XIE Yue-han, LÜ Chao, JIANG Ning-jun, SHI Bin, . Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!