›› 2017, Vol. 38 ›› Issue (6): 1841-1848.doi: 10.16285/j.rsm.2017.06.036

• Testing Technology • Previous Articles    

Development and test verification of a new cyclic simple shear apparatus

SHAO Sheng-jun, WANG Qiang, WU Fei-jie   

  1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
  • Received:2015-10-16 Online:2017-06-12 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (11572245).

Abstract: Compared with cyclic triaxial and torsion shear apparatuses, the cyclic simple shear apparatus has obvious advantages, e.g., simulating in-situ conditions under earthquakes, and directly applying shear stress and measuring shear strain. However, applications of current cyclic simple shear apparatuses are still limited due to technical problems, such as non-uniform shear stress or strain, boundary condition un-determined, potential shear plane, and size effect of specimen. In this study, a new cyclic simple shear apparatus with hinged structures for a cubical specimen was developed to resolve these problems. The design concept and loading principle were proposed by considering the loading mechanics and stress-strain condition of current simple shear apparatuses. Several main components of the apparatus were presented in detail, including pressure cell, loading system, measurement system and automatic control system. The shear strain distribution of soil specimen subjected to loading from three different loading devices was analyzed by the three-dimensional finite differential program, which proved that the shear strain distribution of soil specimen subjected to loading from the new simple shear apparatus were more uniform than the other two. Finally, a series of cyclic simple shear tests on intact loess specimens were conducted with this developed apparatus under different vertical pressures, water contents and shear strain amplitudes. The results show that the apparatus is reliable and accurate in loading control. The dynamic load input can be reproduced with the acquired data. The formation process of seismic subsidence of loess and the corresponding influencing law are revealed by the relationships between vertical strain, shear stress, shear strain and the number of loading cycles.

Key words: cyclic simple shear apparatus, loess, cyclic simple shear test, seismic subsidence

CLC Number: 

  • TU 415

[1] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
[2] CHU Feng, ZHANG Hong-gang, SHAO Sheng-jun, DENG Guo-hua, . Experimental study on mechanical deformation and corrosion resistance characteristics of loess reinforced with synthetic waste cloth fiber yarn [J]. Rock and Soil Mechanics, 2020, 41(S1): 394-403.
[3] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[4] WEN Xin, HU Zhi-ping, ZHANG Xun, CHAI Shao-bo, LÜ Xin-bo, . Modified infiltration model for saturated-unsaturated loess based on Green-Ampt model and its parametric study [J]. Rock and Soil Mechanics, 2020, 41(6): 1991-2000.
[5] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
[6] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[7] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[8] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[9] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[10] LIU Hua, ZHANG Shuo-cheng, NIU Fu-jun, SHAO Zhu-shan, NIU Ze-lin, LU Jie, . Experimental study on one-dimensional compression characteristics of Q3 loess contaminated by acid or alkali solutions [J]. Rock and Soil Mechanics, 2019, 40(S1): 210-216.
[11] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[12] FENG Jun, WANG Yang, WU Hong-gang, LAI Bing, XIE Xian-dang, . Field pullout tests of basalt fiber-reinforced polymer ground anchor [J]. Rock and Soil Mechanics, 2019, 40(7): 2563-2573.
[13] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[14] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[15] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!