Rock and Soil Mechanics ›› 2018, Vol. 39 ›› Issue (12): 4508-4516.doi: 10.16285/j.rsm.2017.0784

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of mechanical properties of hydrate-bearing sediments during depressurization mining

WU Qi1,2,3,4,5, LU Jing-sheng1,2,3,4, LI Dong-liang1,2,3,4, LIANG De-qing1,2,3,4   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; 2. Key Laboratory of Gas Hydrate, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; 3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; 4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-04-25 Online:2018-12-11 Published:2018-12-31
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51474197,51661165011) and the National Key Research and Development Plan of China(2016YFC0304002).

Abstract: Natural gas hydrate is anticipated to be a potential energy resource. During the mining process from methane hydrate reservoir, the decomposition of methane hydrate can cause risks threatening the safety of engineering and geology. A series of shear tests under different confining pressure conditions was carried out using self-developed low-temperature and high-pressure triaxial apparatus to investigate the mechanical properties of sediments containing methane hydrate under different conditions. The experiment combined with conventional triaxial shear method and multi-stage loading tests was focused on the hydrate decomposition process. It was found that the strength of the sediments was significantly increased due to the presence of hydrates. In the process of depressurization, the strength of sediments was found to be affected by the variations of effective confining pressure and the hydrate saturation. At the early stage, due to the decrease of pore pressure, the effective confining pressure significantly increased, and the shear strength increased as well. In the later stage, the shear strength of samples decreased under high effective confining pressure due to the decrease of hydrate content. The effective confining pressure had a great effect on volumetric strain of the hydrate sediments, and higher effective confining pressure led to obvious shear shrinkage.

Key words: methane hydrate-bearing sediments, depressurization, mechanical properties, triaxial tests

CLC Number: 

  • TU452
[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] XI Bao-ping, WU Yang-chun, WANG Shuai, XIONG Gui-ming, ZHAO Yang-sheng, . Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures [J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94.
[3] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[4] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[5] WANG Kang-yu, ZHUANG Yan, GENG Xue-yu, . Experimental study on critical dynamic stress of coarse-grained soil in railway subgrade [J]. Rock and Soil Mechanics, 2020, 41(6): 1865-1873.
[6] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[7] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[8] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[9] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[10] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[11] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[12] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[13] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[14] CHEN Min, ZHANG Tao, SHAN Hua-gang, WANG Xin-zhi, MENG Qing-shan, YU Ke-fu, . Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275-2283.
[15] ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, XIONG Hao, ZHOU Zheng-long, . Experimental investigation on a new incremental pore pressure model characterized by shear-volume strain coupling effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!