›› 2017, Vol. 38 ›› Issue (12): 3573-3580.doi: 10.16285/j.rsm.2017.12.023

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on mechanical characteristics of two parallel fractured rock under frozen condition

ZHANG Jin-xun1, YANG Hao1, 2, SHAN Ren-liang2, WU Fu-mei1, GUO Zhi-ming2   

  1. 1. Postdoctoral Workstation, Beijing Urban Construction Group Co., Ltd., Beijing 100088, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing, 100083, China
  • Received:2015-12-14 Online:2017-12-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (NSFC) (41572270).

Abstract: Cracks significantly influence the stability of rock engineering, and two parallel cracks are the severe distribution forms of cracks. A series of triaxial compression tests were conducted on sandstone specimens with two parallel cracks to investigate the effect of fracture morphology on its mechanical properties and failure modes. The results showed that strength, elastic modulus and Poisson’s ratio of fractured rock were influenced by both the trace length and the trace length ratio. It was also found that these parameters decreased first, then increased immediately with dip increments, and less varied with spacing between cracks. When the dip angle was less than 30°, the failure plane initiated from crack tips and propagated through the rock bridge along the direction of principal stress. Shear failures localised within one crack, when the angle was between 30°and 60°. For the rock specimen with small trace length and trace length ratio (continuity 75%), but the trace length ratio remained relatively small (trace length ratio <1). For the rock with moderate cracks (continuity falls between 25%~75%) and the trace length ratio of approximately 1, failure modes were controlled by two cracks.

Key words: two parallel fractured rock, fracture dip, fracture spacing, trace length, mechanical properties

CLC Number: 

  • TU 457

[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] CHEN Qing-fa, YANG Cheng-ye, YIN Ting-chang, WANG Yu, . Combination relationship of ore block structures in metal mines [J]. Rock and Soil Mechanics, 2020, 41(S1): 74-82.
[3] XI Bao-ping, WU Yang-chun, WANG Shuai, XIONG Gui-ming, ZHAO Yang-sheng, . Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures [J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94.
[4] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[5] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[6] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[7] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[8] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[9] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[10] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[11] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[12] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[13] CHEN Min, ZHANG Tao, SHAN Hua-gang, WANG Xin-zhi, MENG Qing-shan, YU Ke-fu, . Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275-2283.
[14] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
[15] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!