›› 2018, Vol. 39 ›› Issue (S1): 446-452.doi: 10.16285/j.rsm.2017.2024

• Geotechnical Engineering • Previous Articles     Next Articles

Improved calculation method of foundation pit enclosure structure based on p-y curve

LIU Cheng-yu1,2, ZHANG Zhi-xiang1   

  1. 1. College of Environment and Recourses, Fuzhou University, Fuzhou, Fujian 350116, China; 2. Fujian Provincial University, Engineering Research Center of Geological Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
  • Received:2017-10-10 Online:2018-07-20 Published:2018-09-02
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41272300).

Abstract: In current researches, although the calculation method of the foundation pit enclosure structure based on p-y curve has considered the actual situation for which the inside soil of the foundation pit may enter into the plastic state, it has not considered the lateral displacement of the retaining wall when the internal bracing is erected, which starts working after the retaining wall has occurred the initial displacement. In view of the above-mentioned shortcomings, this paper presents a calculation model of the foundation pit enclosure structure based on p-y curve, considering the initial displacement of the retaining wall where the internal bracings erect at the time of bracing. The finite difference equations and methods for lateral displacement calculation of enclosure wall are established; and then the rationality of the proposed method is verified by case studies. Theoretical analysis and case studies are all shown that the calculation method of the foundation pit enclosure structure based on p-y curve is reasonable.

Key words: foundation pit, p-y curve, internal bracings, lateral displacement, finite difference

CLC Number: 

  • TU473

[1] XU Ri-qing, CHENG Kang, YING Hong-wei, LIN Cun-gang, LIANG Rong-zhu, FENG Su-yang, . Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect [J]. Rock and Soil Mechanics, 2020, 41(S1): 195-207.
[2] GUO Jian, CHEN Jian, HU Yang. Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model [J]. Rock and Soil Mechanics, 2020, 41(S1): 299-304.
[3] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[4] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[5] WANG Cheng-tan, WANG Hao, QIN Wei-min, ZHONG Guo-qiang, CHEN Wu, . Evaluation of collapse possibility of deep foundation pits in metro stations based on multi-state fuzzy Bayesian networks [J]. Rock and Soil Mechanics, 2020, 41(5): 1670-1679.
[6] WANG Hong-xin, SHEN Xu-kai, . Heave-resistant stability analysis method of foundation pit considering support [J]. Rock and Soil Mechanics, 2020, 41(5): 1680-1689.
[7] YANG Xue-xiang, JIAO Yuan-fa, YANG Yu-yi, . Development and test of aerated inflation controlled anchors [J]. Rock and Soil Mechanics, 2020, 41(3): 869-876.
[8] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[9] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[10] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[11] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[12] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[13] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[14] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[15] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!