Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (9): 3618-3624.doi: 10.16285/j.rsm.2018.1023

• Geotechnical Engineering • Previous Articles     Next Articles

Bridge pier deformation and control technology of jacking framed bridge with loading under crossing high speed railway

LI Qiao, MENG Fan-zeng, NIU Yuan-zhi   

  1. China Railway Design Corporation, Tianjin 300308, China
  • Received:2018-06-12 Online:2019-09-10 Published:2019-09-08
  • Supported by:
    This work was supported by the Research and Development Project of Beijing Bureau Group Co. of China Railway(2018CG24) and the Science and Technology Development Project of China Railway Design Corporation(721678).

Abstract: In this study, a scheme of jacking framed bridge with loading was proposed based on the concept of unload-load balance. Taking a highway under Beijing-Shanghai high-speed railway as an example, the deformation and control technology of its piers were also studied. The results show that the highway is excavated at a depth of 10 m under the high-speed railway bridge, and the excavation volume is nearly 100, 000 square meters. The uplift deformation of the high-speed railway is effectively controlled by adopting the scheme of the jacking framed bridge with loading, in which the monitoring and loading measures of the soil heap on the top of the framed bridge, under the bridge and in the framed bridge are carried out. After three months of operation, the cumulative maximum differential settlement of adjacent piers is 2.7 mm, which meet specifications with a margin of 46%. Rail inspections reveal that the regularity of ballastless track satisfies operational requirements. Through comparative analysis, the compressive modulus of silty clay in the numerical model can be determined under the stress state of experimental P0 - P0 + 100 kPa (P0 is the soil self-weight stress), and the unloading modulus can be 3?5 times of the compressive modulus.

Key words: jacking framed bridge with loading, under high-speed railway, monitoring, deformation control

CLC Number: 

  • TU 433
[1] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[2] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[3] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[4] ZHENG Shuai, JIANG An-nan, ZHANG Feng-rui, ZHANG Yong, SHEN Fa-yi, JIANG Xu-dong, . Dynamic classification method of surrounding rock and its engineering application based on machine learning and reliability algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 308-318.
[5] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[6] LI Tong, FENG Xia-ting, WANG Rui, XIAO Ya-xun, WANG Yong, FENG Guang-liang, YAO Zhi-bin, NIU Wen-jing, . Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(7): 2847-2854.
[7] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[8] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[9] WANG Jian-feng, LI Tian-bin, MA Chun-chi, ZHANG Hang, HAN Yu-xuan, ZHOU Xiong-hua, JIANG Yu-peng, . Gravitational search algorithm based microseismic positioning in tunnel surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(11): 4421-4428.
[10] HOU Gong-yu, HAN Yu-chen, XIE Bing-bing, WEI Guang-qing, LI Zi-xiang, XIAO Hai-lin, ZHOU Tian-ci, . Pretension strain loss of fixed-point optical fiber in tunnel structural health monitoring [J]. Rock and Soil Mechanics, 2019, 40(10): 4120-4128.
[11] LIU Yong, FENG Shuai, QIN Zhi-meng. Similarity evaluation method of landslide monitoring points based on motion-angle-difference [J]. Rock and Soil Mechanics, 2019, 40(1): 288-296.
[12] JIANG Xiong, XU Nu-wen, ZHOU Zhong, HOU Dong-qi, LI Ang, ZHANG Min, . Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2019, 40(1): 305-314.
[13] HE Hai-jie, LAN Ji-wu, GAO Wu, CHEN Yun-min, MA Peng-cheng, XIAO Dian-kun, . Application and analysis of compressed air drainage wells in landfill slip control [J]. Rock and Soil Mechanics, 2019, 40(1): 343-350.
[14] DONG Zhi-hong, DING Xiu-li, HUANG Shu-ling, WU Ai-qing, CHEN Sheng-hong, ZHOU Zhong, . Analysis of ageing-stress characteristics and long-term bearing risk of anchor cable for a large cavern in high geo-stress area [J]. Rock and Soil Mechanics, 2019, 40(1): 351-362.
[15] WU Chang-jiang, SUN Zhao-hua, LAI Yun-jin, BAO Hua, . Study of deformation characteristics of diaphragm wall induced by deep large excavation in soft soil region [J]. Rock and Soil Mechanics, 2018, 39(S2): 245-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!