Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (10): 3343-3354.doi: 10.16285/j.rsm.2019.2195

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test and numerical simulation study on the mechanical characteristics of the anchored slide-resistant pile for stabilizing the colluvial landslide

WANG Cheng-tang1, 2, WANG Hao1, ZHANG Yu-feng3, QIN Wei-min1, MIN Hong1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430071, China
  • Received:2020-01-02 Revised:2020-05-11 Online:2020-10-12 Published:2020-11-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41672314, 41472288) and the Key R&D Program of China (2017YFC1501304).

Abstract: In order to study the mechanical characteristics and the combined anti-slide mechanism of anchored slide-resistant pile for stabilizing the colluvial landslide, an indoor physical model test of a landslide reinforced by anchored slide-resistant pile under multi-stage loading was carried out. The variation curves of displacement of the pile top, soil pressure at the fore and rear of the pile, bending moment of the pile, axial force of anchor cable, deep horizontal displacement of sliding mass, and the characteristics of deformation and failure of the landslide are analyzed. Moreover, numerical simulation is adopted to compare with the model test and the results conform to each other. The results show that: 1) The horizontal displacement of the pile top, the bending moment of the pile and the axial force of anchor cable all show obvious three-stage characteristics under the variation of thrust load, and the load sharing ratio of the pile over the cable increases at first, then decreases, and finally tends to be stable. 2) The sliding mass resistance force at the fore of the pile is parabolic, and the value of the resistance force is small. The sliding mass thrust load at the rear of the pile is parabolic, and the resultant force point is 0.5h1 above the sliding surface (h1 is the length of the loaded segment). 3) The maximum bending moment point of the piles is always 2 cm below the sliding surface, indicating that the sliding bed at the fore of the pile has not been damaged. 4) The load distribution of the piles calculated through the measured bending moment of the piles indicates that the resistance force of the piles is mainly provided by the sliding bed below the sliding surface at the fore of the pile, and the resistance force is triangular. 5) The setting of the anchor cable can effectively limit the pile deformation. Meanwhile, the anchor cable failure problem should be paid more attention to in engineering practice. The research results can provide experimental basis for the rational design of anchored slide-resistant pile in the treatment of colluvial landslide.

Key words: slope engineering, anchored slide-resistant pile, colluvial landslide, model test, numerical simulation

CLC Number: 

  • P642.22
[1] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[2] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[3] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[4] ZHENG Jun-jie, SHAO An-di, XIE Ming-xing, JING Dan, . Experimental study on retaining wall with EPS cushion under different backfill widths [J]. Rock and Soil Mechanics, 2021, 42(2): 324-332.
[5] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, XU Yi-fei, . Experimental study on lateral bearing behavior of post-grouted piles in calcareous sand [J]. Rock and Soil Mechanics, 2021, 42(2): 411-418.
[6] XIAO Jie-fu, LI Yun-an, HU Yong, ZHANG Shen, CAI Jun-ming, . Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall [J]. Rock and Soil Mechanics, 2021, 42(2): 471-480.
[7] LIU Chun-lin, TANG Meng-xiong, HU He-song, YUE Yun-peng, HOU Zhen-kun, CHEN Hang, . An experimental study of vertical bearing capacity of DPC piles considering sediment effect at pile bottom [J]. Rock and Soil Mechanics, 2021, 42(1): 177-185.
[8] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[9] JIN Ai-bing, CHEN Shuai-jun, ZHAO An-yu, SUN Hao, ZHANG Yu-shuai, . Numerical simulation of open-pit mine slope based on unmanned aerial vehicle photogrammetry [J]. Rock and Soil Mechanics, 2021, 42(1): 255-264.
[10] LI Jun, ZHAI Wen-bao, CHEN Zhao-wei, LIU Gong-hui, ZHOU Ying-cao, . Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element [J]. Rock and Soil Mechanics, 2021, 42(1): 265-279.
[11] LIU Run, CAO Tian-ming, CHEN Guang-si, ZHANG Hai-yang, LI Cheng-feng. Experimental study of the effect of spudcan penetration and extraction on bearing capacity of an adjacent spudcan [J]. Rock and Soil Mechanics, 2020, 41(9): 2943-2952.
[12] MENG Min-qiang, WANG Lei, JIANG Xiang, WANG Cheng-gui, LIU Han-long, XIAO Yang, . Single-particle crushing test and numerical simulation of coarse grained soil based on size effect [J]. Rock and Soil Mechanics, 2020, 41(9): 2953-2962.
[13] ZENG Chao-feng, XUE Xiu-li, SONG Wei-wei, LI Miao-kun, BAI Ning. Mechanism of foundation pit deformation caused by dewatering before soil excavation: an experimental study [J]. Rock and Soil Mechanics, 2020, 41(9): 2963-2972.
[14] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
[15] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[6] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[7] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .
[8] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[9] KANG Hou-rong, LEI Ming-tang, ZHANG Xie-dong, ZHAO Jie-hua. Karst environment zoning for highway engineering of Guizhou Province[J]. , 2009, 30(10): 3032 -3036 .
[10] CHEN Song, XU Guang-li, CHEN Guo-jin3 WU Xue-ting. Research on engineering geology characteristics of soil in sliding zone of Huangtupo landslide in Three Gorges Reservoir area[J]. , 2009, 30(10): 3048 -3052 .