Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3687-3694.doi: 10.16285/j.rsm.2020.0224

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A method for evaluating the unloading disturbance and sample quality of marine gas-bearing sediments based on shear wave velocity

YANG Zhi-yong1, 2, WANG Yong1, 2, KONG Ling-wei1, 2, GUI Bin3, CHEN Kai-wen3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. College of Civil Engineering and Architecture,Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2020-03-04 Revised:2020-06-19 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979269,51579237).

Abstract: Compared with the sampling on land, there are more disturbance factors on the sample in marine environment. Therefore, the quantitative evaluation of sample quality is of vital importance for marine geotechnical engineering. Based on the triaxial test of undrained unloading stress path and the bender element test, Hangzhou Bay marine fine sand was used to simulate the disturbance effect caused by stress release in the sampling process of marine water-soluble gas deposits. The change of shear wave velocity(Vs_lab/Vs_insitu) before and after unloading disturbance and its correlation with the rate of void ratio ( ) were investigated, and the feasibility of using the shear wave velocity method to quantitatively evaluate the quality of marine sediment samples was also discussed. The results show that the shear wave velocity of sand decreased significantly due to the unloading disturbance; and the change in void ratio of sand Δe presented a "S-shaped" curve with the increase of unloading amplitude. Moreover, the shear wave velocity ratio had a good relationship with the rate of void ratio before and after the unloading disturbance. The results of sample quality evaluation based on the shear wave velocity method are consistent with those from the method proposed by Lunne, which is based on the change rate of void ratio. This work provides a beneficial reference for the sample quality evaluation of sediments in the marine geotechnical engineering.

Key words: marine sediments, sample quality, disturbance, bender element, shear wave velocity

CLC Number: 

  • TU 441
[1] LU Tai-shan, LIU Song-yu, CAI Guo-jun, WU Kai, XIA Wen-jun, . Study on the disturbance and recompression settlement of soft soil induced by foundation excavation [J]. Rock and Soil Mechanics, 2021, 42(2): 565-573.
[2] LI Hong-po, MEI Guo-xiong, XIAO Tao, CHEN Zheng. Study of soil consolidation by vertical drains with overlapping smear zones [J]. Rock and Soil Mechanics, 2020, 41(5): 1560-1566.
[3] WANG Qing-yuan, LIU Jie, WANG Pei-tao, LIU Fei, . 冲击扰动诱发蠕变岩石加速失稳破坏试验 [J]. Rock and Soil Mechanics, 2020, 41(3): 781-788.
[4] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[5] ZHAN Liang-tong, HU Ying-tao, LIU Xiao-chuan, CHEN Jie, WANG Han-lin, ZHU Bin, CHEN Yun-min. Centrifuge modelling of rainfall infiltration in an unsaturated loess and joint monitoring of multi-physical parameters [J]. Rock and Soil Mechanics, 2019, 40(7): 2478-2486.
[6] YANG Yang, SUN Rui, CHEN Zhuo-shi, YUAN Xiao-ming. Liquefaction probability formula of shear wave velocity based on conventional parameters of soil layer [J]. Rock and Soil Mechanics, 2019, 40(7): 2755-2764.
[7] ZHU Yu-meng, WU Qi, CHEN Guo-xing, . Experimental investigation on shear wave velocity of sand-silt mixtures based on the theory of inter-grain contact state [J]. Rock and Soil Mechanics, 2019, 40(4): 1457-1464.
[8] WU Qiu-hong, ZHAO Fu-jun, WANG Shi-ming, ZHOU Zhi-hua, WANG Bin, LI Yu, . Mechanical response characteristics of full grouted rock bolts subjected to dynamic loading [J]. Rock and Soil Mechanics, 2019, 40(3): 942-950.
[9] CUI Chun-yi, MENG Kun, WU Ya-jun, MA Ke-yan, LIANG Zhi-meng, . Dynamic impedance for vertical vibration of a single pile in axisymmetrically surrounding soil considering radial inhomogeneity [J]. Rock and Soil Mechanics, 2019, 40(2): 570-579.
[10] RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, REN Wei-guang, WANG Zi-hui, SU Teng, . Study on coal permeability model in front of working face under the influence of mining disturbance and temperature coupling [J]. Rock and Soil Mechanics, 2019, 40(11): 4289-4298.
[11] LU Zhi-guo, JU Wen-jun, ZHAO Yi-xin, WANG Hao, ZHENG Jian-wei, LIU Ai-qing, . Analysis of the mining induced stress rotation influence on fault stability [J]. Rock and Soil Mechanics, 2019, 40(11): 4459-4466.
[12] LI Shu-cai, PAN Dong-dong, XU Zhen-hao, LI Li-ping, LIN Peng,. A model test on catastrophic evolution process of water inrush of a concealed karst cave filled with confined water [J]. , 2018, 39(9): 3164-3173.
[13] LI Shuai, ZHU Wan-cheng, NIU Lei-lei, LI Ru-fei, LI Shao-hua. Experimental study on influence of dynamic disturbance on deformation behavior of rock under stress relaxation [J]. , 2018, 39(8): 2795-2804.
[14] WANG Fei-li, WANG Shu-hong, XIU Zhan-guo. Method on stress quantification and strength characterization of rock structural plane under the disturbance of stress wave [J]. , 2018, 39(8): 2844-2850.
[15] WANG Chun, TANG Li-zhong, CHENG Lu-ping, CHEN Yuan, LIU Tao, WEI Yong-heng, . Dynamic characteristics of skarn subjected to frequent dynamic disturbance under combined action of high axial compression and confining pressure [J]. Rock and Soil Mechanics, 2018, 39(12): 4537-4546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[5] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[6] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[7] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[8] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[9] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[10] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .