Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1401-1411.doi: 10.16285/j.rsm.2021.1228

• Numerical Analysis • Previous Articles     Next Articles

Influence of cavities on blasting vibration characteristics and safety assessments of tunnel shotcrete

YANG Jian-hua1, HUANG Qi-huan1, YAO Chi1, ZHANG Xiao-bo1, ZHOU Chuang-bing1, TAO Tie-jun2   

  1. 1. School of Infrastructure Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; 2. School of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • Received:2021-08-06 Revised:2022-03-06 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51969015, 52179102) and the Natural Science Foundation of Jiangxi Province (20204BCJ23002).

Abstract: During tunnel construction, blasting excavation and shotcrete are usually carried out alternately. Under blasting vibration, the bond between shotcrete and tunnel rock may be lost, resulting in local cavities at the interface. In this study, the influence of the cavity on blasting vibration characteristics and safety assessments of the tunnel shotcrete are investigated by using a theoretical model of thin-plate vibration, 3DEC modeling and field monitoring. The results show that when cavities exist at the interface between shotcrete and surrounding rock, the vibration velocity is amplified, the vibration duration becomes longer and the vibration frequency decreases for the shotcrete at the cavity location. Furthermore, the amplitude-frequency spectrum of the vibration has only one prominent peak. In addition, the peak particle velocity (PPV) decays faster with distance based on the regression analysis. For the safety assessments of the shotcrete layer, the extent of the dangerous zone is increased accordingly because the vibration on the shotcrete at the cavity location is amplified. As a result, the support time of shotcrete needs to be delayed and the maximum charge weight per delay needs to be reduced so as to ensure the safety of shotcrete under blasting vibration. This will lead to a decrease in the tunnel excavation efficiency and an increase in the construction cost.

Key words: tunnel, shotcrete, cavity, blasting vibration, peak particle velocity

CLC Number: 

  • U 455
[1] ZHANG Zhi-guo, YE Tong, ZHANG Cheng-ping, PAN Y T, WU Zhong-teng, . Response analysis of sand seepage pressure around shield tunnel in sloping seabed under Stokes second order wave [J]. Rock and Soil Mechanics, 2022, 43(6): 1635-1659.
[2] CUI Zhen, SHENG Qian, LI Jian-he, FU Xing-wei, . Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact [J]. Rock and Soil Mechanics, 2022, 43(5): 1364-1373.
[3] JIAO Yu-qi, HE Lin-lin, LIANG Yue, LIU Xu-fei, . Study of vertical bearing capacity of spudcan foundations considering strain-softening effect of structured clay [J]. Rock and Soil Mechanics, 2022, 43(5): 1374-1382.
[4] LIU Ying-jing, YANG Jie, YIN Zhen-yu, . Numerical analysis of the impact of internal erosion on underground structures: application to tunnel leakage [J]. Rock and Soil Mechanics, 2022, 43(5): 1383-1390.
[5] ZHU Min, CHEN Xiang-sheng, ZHANG Guo-tao, PANG Xiao-chao, SU Dong, LIU Ji-qiang, . Parameter back-analysis of hardening soil model for granite residual soil and its engineering applications [J]. Rock and Soil Mechanics, 2022, 43(4): 1061-1072.
[6] LI Jing-pei, LIU Geng-yun, ZHOU Pan, . A semi-analytical solution for cavity undrained expansion in over-consolidated soils based on similarity transform theory [J]. Rock and Soil Mechanics, 2022, 43(3): 582-590.
[7] ZHANG Chuang, REN Song, WU Fei, LIU Jie, ZHOU Xu-hui, . Experimental study on the permeability characteristics of laminated shale under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(3): 649-658.
[8] LI Peng-fei, GOU Bao-liang, ZHU Meng, GAO Xiao-jing, GUO Cai-xia, . A calculation method of the time-dependent behavior for tunneling-induced ground settlement based on virtual image technique [J]. Rock and Soil Mechanics, 2022, 43(3): 799-807.
[9] WANG Yong-hong, DU Wen, ZHANG Guo-hui, SONG Yang, . An elasto-plastic analysis of a deep buried tunnel in rock mass based on generalized Zhang-Zhu strength criterion and preliminary application [J]. Rock and Soil Mechanics, 2022, 43(3): 819-830.
[10] LIU Wei-zheng, DAI Xiao-ya, SUN Kang, AI Guo-ping, LEI Tao, . Calculation method of longitudinal deformation of metro shield tunnel overpassing existing line at short distance [J]. Rock and Soil Mechanics, 2022, 43(3): 831-842.
[11] ZHOU Guang-xin, SHENG Qian, CUI Zhen, WANG Tian-qiang, MA Ya-li-na, FU Xing-wei, . Model test of failure mechanism of tunnel with flexible joint crossing active fault under strike-slip fault dislocation [J]. Rock and Soil Mechanics, 2022, 43(1): 37-50.
[12] ZHANG Kui, YANG Chang, CHEN Chun-lei, PENG Ci-cai, LIU Jie, . Scale model test on laser-assisted rock indentation by TBM disc cutter indenter [J]. Rock and Soil Mechanics, 2022, 43(1): 87-96.
[13] WANG Zu-xian, SHI Cheng-hua, LIU Jian-wen. Analytical solution of additional response of shield tunnel under asymmetric jack thrust [J]. Rock and Soil Mechanics, 2021, 42(9): 2449-2460.
[14] YU Chong, YUE Hao-zhen, LI Hai-bo, ZHOU Chuan-bo, CHEN Shi-hai, SHAO Zhu-shan, . Analysis of blasting control parameters and reliability based on rock mass quality [J]. Rock and Soil Mechanics, 2021, 42(8): 2239-2249.
[15] ZHOU Yong-qiang, SHENG Qian, LI Na-na, FU Xiao-dong, . Preliminary study on time-space effect of the dynamic response of long tunnel under non-uniform ground motion [J]. Rock and Soil Mechanics, 2021, 42(8): 2287-2297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .