Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (1): 37-50.doi: 10.16285/j.rsm.2021.0765

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test of failure mechanism of tunnel with flexible joint crossing active fault under strike-slip fault dislocation

ZHOU Guang-xin1, 2, SHENG Qian1, 2, CUI Zhen1, 2, WANG Tian-qiang3, MA Ya-li-na4, FU Xing-wei5   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 4. CCCC Second Highway Consultant Co., Ltd., Wuhan, Hubei 430056, China; 5. China Three Gorges Corporation,Beijing 100038,China
  • Received:2021-05-23 Revised:2021-09-13 Online:2022-01-10 Published:2022-01-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51779253, 52079133), the Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK1912), CRSRI Open Research Program (CKWV2019746/KY) and the MOE Key Laboratory of Major Disaster Forecast and Control in Engineering, Jinan University (20200904002).

Abstract: Based on the fault crossing situation of Xianglushan tunnel of water diversion project, we conducted systematic monitoring and analysis of key mechanical characteristics of tunnel such as surrounding rock rupture pattern, lining damage pattern and crack development, strain distribution characteristics during faults dislocation simulation through indoor physical model tests, and thoroughly studied the damage form and failure mechanism of tunnel with flexible joint crossing active faults under strike-slip fault dislocation. In terms of the mechanism of the design parameters of the flexible joint tunnel to resist faulting, the effects of factors such as liner section length, liner thickness, tunnel diameter, angle between tunnel axis and fault zone, tunnel section form, and mechanical properties of liner materials on the fracture resistance of the flexible joint tunnels were studied in detail. The results of the study show: 1) When the tunnel crossing the active fault is not articulated, the damage pattern presents a combination of shear and bending damage under the fault dislocation, and the lining damage is severe with a phenomenon of peeling off. The tunnel section shows elliptical deformation, and the overall collapse trend is obvious. The damage range of non-articulated tunnel reaches 4Wf (Wf is the width of the fault zone) in this scenario. 2) When the articulated design is adopted in the tunnel crossing the active fault, the deformation of the tunnel shows S-shape under the fault misalignment. The damage of the lining structure is in the form of inter-segment rotation and misalignment, while the lining segments are relatively intact and less damaged. The damage range of the flexible joint tunnel in this scenario is 2.14Wf, which is 48% less than that of the non-flexible joint tunnel, indicating that the articulated design can change the deformation and damage of the tunnel under the active fault dislocation and reduce the damage range of the tunnel structure. 3) Under the condition of articulated design, the maximum strain of the tunnel lining structure is mainly distributed in the fault zone, and the tunnel is prone to yield failure. Compared with the non-flexible joint tunnel, the maximum longitudinal tensile strain and compressive strain in the left and right side walls of the flexible joint tunnel are reduced by 56% and 68% respectively, which further indicates that the articulated design can effectively improve the tunnel’s resistance to fault dislocation. 4) In terms of the mechanism of the design parameters of the articulated tunnel, this paper concludes that the resistance performance of articulated tunnel can be enhanced by increasing the tunnel lining thickness, increasing the concrete strength level of the lining, reducing the length of the section and reducing the diameter of the tunnel. The optimal angle of the tunnel through the fault zone is orthogonal, and the circular section can improve the resistance of the flexible joint tunnel compared with the three-centered circular section. In summary, the research results can provide necessary theoretical reference and technical supports for the anti-faulting measures of cross-active fracture tunnel projects.

Key words: tunnel engineering, strike slip fault, model test, failure pattern, articulated design

CLC Number: 

  • U 451
[1] LIN Dan-tong, HU Li-ming. Model tests on the transport behavior of phosphate-sorbed nano zero-valent iron in porous media [J]. Rock and Soil Mechanics, 2022, 43(2): 337-344.
[2] XIAO Fei, KONG Ling-wei, LIU Guan-shi, FENG Heng, DONG Yi-yi, ZENG Er-xian, . Uplift model test and capacity calculation method of metal grillage foundation in medium dense aeolian sand [J]. Rock and Soil Mechanics, 2022, 43(1): 65-75.
[3] WU Hui-ming, ZHAO Zi-rong, LIN Xiao-fei, SHI Jian-qian, GONG Xiao-nan, . Model test of active drainage consolidation method on air-lift effect [J]. Rock and Soil Mechanics, 2021, 42(8): 2151-2159.
[4] LI Yuan-hai, LIU De-zhu, YANG Shuo, KONG Jun, . Experimental investigation on surrounding rock stress and deformation rule of TBM tunneling in deep mixed strata [J]. Rock and Soil Mechanics, 2021, 42(7): 1783-1793.
[5] LIU Zhi-peng, KONG Gang-qiang, WEN Lei, WANG Zhi-hua, QIN Hong-yu, . Model tests on uplift and lateral bearing characteristics of inclined helical pile group embedded in sand [J]. Rock and Soil Mechanics, 2021, 42(7): 1944-1950.
[6] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[7] GUO Ming-wei, MA Huan, YANG Zhong-ming, WANG Bin, DONG Xue-chao, WANG Shui-lin, . Settlement analysis of large open caisson foundation at construction stage of Changtai Yangtze River Bridge [J]. Rock and Soil Mechanics, 2021, 42(6): 1705-1712.
[8] SHEN Yang, FENG Zhao-yan, DENG Jue, CHEN Kai-jia, XU Jun-hong, . Model test on bearing capacity of coral sand foundation in the South China Sea [J]. Rock and Soil Mechanics, 2021, 42(5): 1281-1290.
[9] ZHANG Yu, LI Da-yong, LIANG Hao, ZHANG Yu-kun, . Model tests on horizontal bearing capacity and earth pressure distribution of hollow cone-shaped foundation under horizontal monotonic loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1404-1412.
[10] SONG Zhan-ping, GUO De-sai, XU Tian, HUA Wei-xiong, . Risk assessment model in TBM construction based on nonlinear fuzzy analytic hierarchy process [J]. Rock and Soil Mechanics, 2021, 42(5): 1424-1433.
[11] LI Qing-song, WEN Lei, KONG Gang-qiang, GAO Hong-mei, SHEN Zhi-fu, . Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method [J]. Rock and Soil Mechanics, 2021, 42(4): 1088-1094.
[12] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[13] ZHENG Jun-jie, SHAO An-di, XIE Ming-xing, JING Dan, . Experimental study on retaining wall with EPS cushion under different backfill widths [J]. Rock and Soil Mechanics, 2021, 42(2): 324-332.
[14] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, XU Yi-fei, . Experimental study on lateral bearing behavior of post-grouted piles in calcareous sand [J]. Rock and Soil Mechanics, 2021, 42(2): 411-418.
[15] XIAO Jie-fu, LI Yun-an, HU Yong, ZHANG Shen, CAI Jun-ming, . Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall [J]. Rock and Soil Mechanics, 2021, 42(2): 471-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .